Craps principle

In probability theory, the craps principle is a theorem about event probabilities under repeated iid trials. Let and denote two mutually exclusive events which might occur on a given trial. Then the probability that occurs before equals the conditional probability that occurs given that or occur on the next trial, which is

The events and need not be collectively exhaustive (if they are, the result is trivial).[1][2]

Proof

Let be the event that occurs before . Let be the event that neither nor occurs on a given trial. Since , and are mutually exclusive and collectively exhaustive for the first trial, we have

and . Since the trials are i.i.d., we have . Using and solving the displayed equation for gives the formula

.

Application

If the trials are repetitions of a game between two players, and the events are

then the craps principle gives the respective conditional probabilities of each player winning a certain repetition, given that someone wins (i.e., given that a draw does not occur). In fact, the result is only affected by the relative marginal probabilities of winning and  ; in particular, the probability of a draw is irrelevant.

Stopping

If the game is played repeatedly until someone wins, then the conditional probability above is the probability that the player wins the game. This is illustrated below for the original game of craps, using an alternative proof.

Craps example

If the game being played is craps, then this principle can greatly simplify the computation of the probability of winning in a certain scenario. Specifically, if the first roll is a 4, 5, 6, 8, 9, or 10, then the dice are repeatedly re-rolled until one of two events occurs:

Since and are mutually exclusive, the craps principle applies. For example, if the original roll was a 4, then the probability of winning is

This avoids having to sum the infinite series corresponding to all the possible outcomes:

Mathematically, we can express the probability of rolling ties followed by rolling the point:

The summation becomes an infinite geometric series:

which agrees with the earlier result.

References

  1. ^ Susan Holmes (1998-12-07). "The Craps principle 10/16". statweb.stanford.edu. Retrieved 2016-03-17.
  2. ^ Jennifer Ouellette (31 August 2010). The Calculus Diaries: How Math Can Help You Lose Weight, Win in Vegas, and Survive a Zombie Apocalypse. Penguin Publishing Group. pp. 50–. ISBN 978-1-101-45903-4.

Notes

Read other articles:

Attack on KurePart of the Pacific Theater of World War IITwo Japanese aircraft carriers under attack at Kure on 19 March 1945. The ship at bottom of the photo is either Amagi or Katsuragi. The other carrier is Kaiyo.Date19 March 1945LocationKure, Japan34°14′N 132°33′E / 34.23°N 132.55°E / 34.23; 132.55Status US failureBelligerents United States JapanStrength 321 aircraft 17 warshipsCasualties and losses 825 killed2 fleet carriers damaged27 aircraft shot down59 ...

 

Acción de la Venta de Echavarri Parte de Primera Guerra Carlista Escenario del territorio en el que actuó Zumalacárregui.Fecha 28 de octubre de 1834Lugar 15 kilómetros al este de Vitoria (País Vasco)Coordenadas 42°52′05″N 2°30′02″O / 42.8681, -2.50056Resultado Victoria carlistaBeligerantes Carlistas Isabelinos Comandantes Tomás de Zumalacárregui Joaquín de Osma [editar datos en Wikidata] La Acción de la venta de Echavarri fue un enfrentamiento dura...

 

Hamlet in New York, United StatesGlenmonthamletEtymology: For Cornelius Glen[1]GlenmontLocation of Glenmont within the state of New YorkCoordinates: 42°36′17″N 73°46′10″W / 42.60472°N 73.76944°W / 42.60472; -73.76944CountryUnited StatesStateNew YorkRegionCapital DistrictCountyAlbanyTime zoneUTC-5 (EST) • Summer (DST)UTC-4 (EDT)ZIP Code12077Area code518 Glenmont is a hamlet in the town of Bethlehem, Albany County, New York, United States....

English folk ballad Wikisource has original text related to this article: Child's Ballads/26 The Twa Corbies, illustration by Arthur Rackham to Some British Ballads The Three Ravens (Roud 5, Child 26) is an English folk ballad, printed in the song book Melismata[1] compiled by Thomas Ravenscroft and published in 1611, but it is perhaps older than that. Newer versions (with different music) were recorded right up through the 19th century. Francis James Child recorded several versi...

 

Die Liste der Kulturdenkmale in Unkersdorf umfasst sämtliche Kulturdenkmale der Dresdner Gemarkung Unkersdorf. Inhaltsverzeichnis 1 Legende 2 Liste der Kulturdenkmale in Unkersdorf 3 Ehemalige Kulturdenkmale 4 Weblinks Legende Bild: Bild des Kulturdenkmals, ggf. zusätzlich mit einem Link zu weiteren Fotos des Kulturdenkmals im Medienarchiv Wikimedia Commons Bezeichnung: Denkmalgeschützte Objekte und ggf. Bauwerksname des Kulturdenkmals Lage: Straßenname und Hausnummer oder Flurstücknumme...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Puedes avisar al redactor principal pegando lo siguiente en su página de discusión: {{sust:Aviso referencias|Ann Li}} ~~~~Uso de esta plantilla: {{Referencias|t={{sust:CURRENTTIMESTAMP}}}} Ann Li Li disputando la clasificación del Campeonato de Wimbledon 2019.País  Estados UnidosResidencia Devon, Pensilvania, Estados UnidosFecha de nacimiento 26 de junio de 2000 (23 años)Lugar de nacimie...

Overview of the geography of Romania This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2014) (Learn how and when to remove this template message) Geography of RomaniaContinentEuropeRegionBalkan Peninsula and Eastern EuropeCoordinates46°00′N 25°00′E / 46.000°N 25.000°E / 46.000; 25.000AreaRanked 81st • Total238,...

 

Mareau-aux-Prés La mairie. Administration Pays France Région Centre-Val de Loire Département Loiret Arrondissement Orléans Intercommunalité Communauté de communes des Terres du Val de Loire Maire Mandat Bertrand Hauchecorne 2020-2026 Code postal 45370 Code commune 45196 Démographie Gentilé Mareprésiens[1] Populationmunicipale 1 773 hab. (2020 ) Densité 133 hab./km2 Géographie Coordonnées 47° 50′ 52″ nord, 1° 48′ 01″ est Altitu...

 

1962 English contract law case The Hong Kong FirCourtCourt of AppealFull case nameHong Kong Fir Shipping Co Ltd v Kawasaki Kisen Kaisha Ltd Citation(s)[1961] EWCA Civ 7, [1962] 2 QB 26, [1962] 1 All ER 474Transcript(s)Full text of judgment Hong Kong Fir Shipping Co Ltd v Kawasaki Kisen Kaisha Ltd [1962] 2 QB 26 [1961] EWCA Civ 7 is a landmark English contract law case. It introduced the concept of innominate terms, a category between warranties and conditions. Under the Englis...

Wakil Bupati BantulHamemayu Hayuning Bawana (Jawa) Memperindah keindahan duniaPetahanaJoko B. Purnomosejak 26 Februari 2021Masa jabatan5 tahunDibentuk1999Pejabat pertamaH. Totok SudartoSitus webbantulkab.go.id Berikut ini adalah daftar Wakil Bupati Bantul dari masa ke masa. No Wakil Bupati Mulai Jabatan Akhir Jabatan Prd. Ket. Bupati 1 H.Totok Sudarto 1999 2004 1   Drs. H.Mohammad Idham Samawi Jabatan kosong 2004 2005 -   Drs.Mujono N.A.(Penjabat) 2 Drs. H.SumarnoPrs. 2005 2010...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Objek – berita · surat kabar · buku · cendekiawan · JSTOR Artikel ini perlu dikembangkan agar dapat memenuhi kriteria sebagai entri Wikipedia.Bantulah untuk mengembangkan artikel ini. Jika tidak dikemban...

 

1936 agreement on the Turkish Straits Montreux Convention redirects here. For the 1937 treaty that abolished the extraterritorial legal system for foreigners in Egypt, see Montreux Convention Regarding the Abolition of the Capitulations in Egypt. Montreux Convention Regarding the Regime of the StraitsUSS Carney (DDG-64) approaching Yavuz Sultan Selim Bridge on the Bosporus straitSigned20 July 1936 (1936-07-20)LocationMontreux, SwitzerlandEffective9 November 1936 ...

2013 single by MigosHannah MontanaSingle by Migosfrom the album Y.R.N. (Young Rich Niggas) ReleasedNovember 26, 2013Recorded2013GenreHip hoptrapLength3:06LabelQuality ControlSongwriter(s)Quavious MarshallKirsnick BallProducer(s)Dun DealMigos singles chronology Versace (2013) Hannah Montana (2013) Fight Night (2014) Music videoHannah Montana on YouTube Hannah Montana is a song by American hip hop group Migos, released on November 26, 2013, as the second single from their mixtape Y.R.N. (Young ...

 

Historic house in Georgia, United States United States historic placeRockefeller CottageU.S. National Register of Historic PlacesU.S. Historic district Location331 Riverview Dr., Jekyll Island, GeorgiaCoordinates31°3′27″N 81°25′19″W / 31.05750°N 81.42194°W / 31.05750; -81.42194Area2.7 acres (1.1 ha)Built1892 (1892)Architectural styleShingle Style, Rural AmericanNRHP reference No.71000279[1]Added to NRHPJuly 14, 1971 The Rock...

 

No debe confundirse con SENAMA. Servicio Nacional de Menores Logotipo oficial. LocalizaciónPaís ChileInformación generalSigla SENAMEJurisdicción NacionalTipo Organismo públicoSede Huérfanos 587, SantiagoOrganizaciónDirector Nacional Rachid Alay Berenguela (s)Depende de Ministerio de Justicia y Derechos HumanosEmpleados 1 342 (2021)Presupuesto 394 913 361 miles de pesos chilenos (2020)[1]​HistoriaFundación 10 de enero de 1979[2]​ (44 años)Sucesión • ...

2009 single by Steven WilsonHarmony KorineSingle by Steven Wilsonfrom the album Insurgentes A-sideHarmony KorineB-sideThe 78Released23 February 2009RecordedDecember 2007 – August 2008GenreProgressive rock[1]Length9:02LabelKscopeSongwriter(s)Steven WilsonProducer(s)Steven WilsonSteven Wilson singles chronology Harmony Korine (2009) Postcard (2011) Harmony Korine is a song by English musician, songwriter and music producer Steven Wilson. The song is the first track and th...

 

Glacier in China HailuogouA panorama of the HailuogouHailuogouTypeMountain glacierLocationDaxue Mountains, Sichuan, ChinaCoordinates29°34′01″N 101°57′00″E / 29.567°N 101.950°E / 29.567; 101.950 Hailuogou (Chinese: 海螺沟; pinyin: Hǎiluógōu; lit. 'Sea conch ravine'; Tibetan: དུང་དཀར་ལུང་པ, Wylie: dung dkar lung pa, THL: Dungkar Lungpa) is a glacier located in Luding County, Garzê Tibetan Autonomous Prefecture,...

 

В Википедии есть статьи о других людях с фамилией Прэтт. Кайла Прэттангл. Kyla Pratt Имя при рождении Кайла Алисса Прэтт Дата рождения 16 декабря 1986(1986-12-16) (36 лет) Место рождения Лос-Анджелес, Калифорния, США Гражданство  США Профессия актриса, певица Карьера 1993—наст....

Francisco Brines Información personalNacimiento 22 de enero de 1932 Oliva (España) Fallecimiento 20 de mayo de 2021 (89 años)Gandía (España) Sepultura Cementerio General de Valencia Nacionalidad EspañolaEducaciónEducado en Universidad de Valencia Información profesionalOcupación Poeta y escritor Área Poesía Empleador Universidad de OxfordUniversidad de Cambridge Movimiento Generación del 50 Género Poesía Miembro de Real Academia Española Distinciones Premio Nacional de PoesíaP...

 

No debe confundirse con Jaguares XV, equipo argentino que compite en la Súper Liga Americana de Rugby. JaguaresDatos generalesNombre completo JaguaresDeporte RugbyFundación 16 de diciembre de 2015Desaparición 2020Colores               Propietario(s) UAREntrenador indefinidoAyudante Juan Fernández MirandaPatrocinador ESPN, Cerveza Imperial, Gilbert, ICBC, Nike, Telecom Personal, QBE Seguros, Visa CanterburyInstalacionesEstadio Jos...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!