Constant sheaf

In mathematics, the constant sheaf on a topological space associated to a set is a sheaf of sets on whose stalks are all equal to . It is denoted by or . The constant presheaf with value is the presheaf that assigns to each open subset of the value , and all of whose restriction maps are the identity map . The constant sheaf associated to is the sheafification of the constant presheaf associated to . This sheaf identifies with the sheaf of locally constant -valued functions on .[1]

In certain cases, the set may be replaced with an object in some category (e.g. when is the category of abelian groups, or commutative rings).

Constant sheaves of abelian groups appear in particular as coefficients in sheaf cohomology.

Basics

Let be a topological space, and a set. The sections of the constant sheaf over an open set may be interpreted as the continuous functions , where is given the discrete topology. If is connected, then these locally constant functions are constant. If is the unique map to the one-point space and is considered as a sheaf on , then the inverse image is the constant sheaf on . The sheaf space of is the projection map (where is given the discrete topology).

A detailed example

Constant presheaf on a two-point discrete space
Two-point discrete topological space

Let be the topological space consisting of two points and with the discrete topology. has four open sets: . The five non-trivial inclusions of the open sets of are shown in the chart.

A presheaf on chooses a set for each of the four open sets of and a restriction map for each of the inclusions (with identity map for ). The constant presheaf with value , denoted , is the presheaf where all four sets are , the integers, and all restriction maps are the identity. is a functor on the diagram of inclusions (a presheaf), because it is constant. It satisfies the gluing axiom, but is not a sheaf because it fails the local identity axiom on the empty set. This is because the empty set is covered by the empty family of sets, , and vacuously, any two sections in are equal when restricted to any set in the empty family . The local identity axiom would therefore imply that any two sections in are equal, which is false.

To modify this into a presheaf that satisfies the local identity axiom, let , a one-element set, and give the value on all non-empty sets. For each inclusion of open sets, let the restriction be the unique map to 0 if the smaller set is empty, or the identity map otherwise. Note that is forced by the local identity axiom.

Intermediate step for the constant sheaf

Now is a separated presheaf (satisfies local identity), but unlike it fails the gluing axiom. Indeed, is disconnected, covered by non-intersecting open sets and . Choose distinct sections in over and respectively. Because and restrict to the same element 0 over , the gluing axiom would guarantee the existence of a unique section on that restricts to on and on ; but the restriction maps are the identity, giving , which is false. Intuitively, is too small to carry information about both connected components and .

Constant sheaf on a two-point topological space

Modifying further to satisfy the gluing axiom, let

,

the -valued functions on , and define the restriction maps of to be natural restriction of functions to and , with the zero map restricting to . Then is a sheaf, called the constant sheaf on with value . Since all restriction maps are ring homomorphisms, is a sheaf of commutative rings.

See also

References

  1. ^ "Does the extension by zero sheaf of the constant sheaf have some nice description?". Mathematics Stack Exchange. Retrieved 2022-07-08.

Read other articles:

Timeline of the 2020 United States presidential election ← 2016 November 3, 2020 2024 → 2020 U.S. presidential election Timeline 2017–2019 January–October 2020 November 2020 – January 2021 Presidential debates Parties Polling national statewide News media endorsements primary general Fundraising Russian interference Presidential electors (fake electors) Electoral College vote count Presidential transition Subsequent voting restrictions Attempts to overturn Protests...

 

Shirin NeshatNeshat di Viennale 2009Lahir1957 (usia 60)Qazvin, IranPendidikanUniversity of California, Berkeley (BA, MA, MFA)Dikenal atasPementasan media campuran, instalasi video, fotografiKarya terkenalThe Shadow under the Web (1997), Speechless (1996), Woman without Men (2004)[1]Gerakan politikSeni rupa kontemporerPasanganShoja Azari[1] Shirin Neshat (Persia: شیرین نشاط; kelahiran 1957)[2][3] adalah seorang artis visual asal Iran. Ia tinggal di ...

 

ChvostjaneХвостяне Dorp in Bulgarije Situering Oblast Blagoëvgrad Gemeente Garmen Coördinaten 41° 33′ NB, 23° 51′ OL Algemeen Inwoners (31 december 2020) 745 Hoogte 506 m Burgemeester Seyhan Ahmedov (GERB) Overig Postcode 2942 Netnummer 07522 Kenteken Е Foto's Portaal    Bulgarije Chvostjane (Bulgaars: Хвостяне, Hvostyane) is een dorp in het zuidwesten van Bulgarije. Het dorp is gelegen in de gemeente Garmen, oblast Blagoëvgrad. Het dorp ligt hemels...

Eastern Catholic church Syro-Malabar redirects here. For other uses, see Syro-Malabar (disambiguation). This article is about the denomination. For the people, see Syrian Catholics of Malabar. This article is about the Church based in India. For the Church based in the Levant, see Syriac Catholic Church. Not to be confused with Syro-Malankara Catholic Church. Syro-Malabar Catholic ChurchSyriac: ܥܸܕܬܵܐ ܕܡܲܠܲܒܵܪ ܣܘܼܪܝܵܝܵܐMalayalam: സീറോ മലബാർ സഭThe M...

 

مايكل سيرا (بالإنجليزية: Michael Cera)‏  معلومات شخصية اسم الولادة مايكل أوستن سيرا الميلاد 7 يونيو 1988 (العمر 35 سنة) كندا برامبتون، أونتاريو الإقامة تورونتوبروكلين  مواطنة كندا  الديانة إلحاد[1]  الحياة العملية المهنة ممثل،  ومخرج أفلام،  وكاتب سيناريو،  ...

 

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (نوفمبر 2022) هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها...

Arie Luyendyk pada tahun 2010. Arie Luyendyk, nama aslinya Arie Luijendijk (lahir 21 September 1953) adalah pembalap mobil Belanda, ia merupakan dua kali pemenang Indianapolis 500. Luyendyk memulai balapan di awal 1970-an, memenangkan sejumlah gelar nasional Belanda. Pada tahun 1977, ia memenangkan kejuaraan Super Eropa Vee, dan beralih ke Formula Tiga. Sukses terus menghindari dia sampai dia pindah ke Amerika Serikat pada tahun 1984, di mana ia langsung memenangkan kejuaraan Vee Super. Denga...

 

Парламент Соединённого Королевства Великобритании и Северной ИрландииParliament of the United Kingdom of Great Britain and Northern Ireland LVI Парламент Великобритании Тип Тип двухпалатный парламент Палаты Палата лордовПалата общин Руководство Лорд-спикер Барон Джон Макфолл, Независимый с 1 мая 2021 ...

 

2003 single by Adrian Sherwood and Shara Nelson This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Hari Up Hari – news · newspapers · books · scholar · JSTOR (December 2010) (L...

Mata uang Rand Rand merupakan sebuah mata uang negara Afrika Selatan sejak tahun 1961 menggantikan Pound Afrika Selatan. Mata uang ini setiap satuannya terbagi menjadi 100 cent. Mata uang ini terbagi menjadi R10, R20, R50, R100, R200. Lihat pula Perekonomian Afrika Selatan Pranala luar US Federal Reserve Bank historical exchange rate data Artikel bertopik ekonomi ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.lbs

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2023)   لمعانٍ أخرى، طالع إدواردو أوليفيرا (توضيح). إدواردو أوليفيرا معلومات شخصية الاسم الكامل Eduardo Gonçalves Torres de Oliveira[1] الميلاد 26 مايو 1982 (العمر 41 سنة)[2]...

 

Zona Waktu di Eropa: biru muda Waktu Eropa Barat (UTC+0) biru Waktu Eropa Barat (UTC+0) Waktu Musim Panas Eropa Barat (UTC+01:00) merah muda Waktu Eropa Tengah (UTC+01:00) merah Waktu Eropa Tengah (UTC+01:00) Waktu Musim Panas Eropa Tengah (UTC+02:00) kuning Waktu Kaliningrad (UTC+02:00) emas Waktu Eropa Timur (UTC+02:00) Waktu Musim Panas Eropa Timur (UTC+03:00) hijau muda Waktu Minsk, Waktu Moskwa (UTC+03:00) Warna terang menunjukkan negara-negara yang tidak menjalankan waktu musim panas, y...

For modernist reform movements in Islam, see Islamic Modernism. Part of a series onIslam Beliefs Oneness of God Prophets Revealed Books Angels Day of Resurrection Predestination Practices Profession of Faith Prayer Almsgiving Fasting Pilgrimage TextsFoundations Quran Sunnah (Hadith, Sirah) Tafsir (exegesis) Aqidah (creed) Qisas al-Anbiya (Stories of the Prophets) Mathnawi (Poems) Fiqh (jurisprudence) Sharia (law) History Timeline Muhammad Ahl al-Bayt Sahabah Rashidun Caliphate Imamate Medieva...

 

Political elections for public offices in Scotland This article is part of a series within thePolitics of the United Kingdom on thePolitics of Scotland The Crown The Monarch Charles III Heir apparent William, Duke of Rothesay Prerogative Royal family Succession Privy Council Union of the Crowns Balmoral Castle Holyrood Palace Scottish republicanism Executive Scottish Government Yousaf government First Minister The Rt Hon Humza Yousaf MSP Deputy First Minister Shona Robison MSP Cabinet Secreta...

 

American fast food chain This article is about the smoothie retailer. For the Bowling for Soup song, see A Hangover You Don't Deserve. Smoothie King Franchises, Inc.Trade nameSmoothie KingTypePrivateIndustryFoodserviceFounded1973; 50 years ago (1973) inKenner, Louisiana, USFoundersSteve and Cindy KuhnauHeadquartersCoppell, Texas, USKey peopleWan Kim (CEO)Dan Harmon (President)ProductsSmoothiesRevenue US$415.7 million (FY 2018) $372.5 million (FY 2017)Websitewww.smoothie...

Karl Theodor von Küstner, Lithographie von Ignaz Fertig, 1840 Karl Theodor Küstner, ab 1837 von Küstner (* 26. November 1784 in Leipzig; † 28. Oktober 1864 ebenda) war königlich bayerischer Geheimer Hofrat und Hoftheater-Intendant. Inhaltsverzeichnis 1 Herkunft 2 Leben 3 Leistungen 4 Literatur 5 Weblinks 6 Einzelnachweise Herkunft Er entstammt einer Bankiersfamilie. Sein Großvater war der Bankier Heinrich Küstner (1707–1776); seine Eltern waren der Banker Heinrich Küstner (1752–1...

 

Shimao石峁Outer fortifications of ShimaoLocation in north ChinaLocationChinaRegionShaanxiCoordinates38°33′57″N 110°19′31″E / 38.5657°N 110.3252°E / 38.5657; 110.3252Area400 ha or 100 acresHistoryFoundedc. 2300 BCAbandonedc. 1800 BCSite notesArchaeologistsZhouyoung Sun, Roderick Campbell Neolithic site in China -2000EBLAMARIASSYRIAJeul-munAndronovocultureSintashtacultureBMACVakhshAncientNortheast AsiansTarimmummiesOkunevKarakolKhemtsegSamuscult...

 

Jamaica Coat Of Arms Jamaican inventions and discoveries are items, processes, ideas, techniques or discoveries which owe their existence either partially or entirely to a person born in Jamaica, or to a citizen of Jamaica or to a person born abroad of Jamaican heritage. Agricultural machinery Invention (of the first) sorrel harvesting machine that facilitates the mechanical stripping of the red calyces flesh from the sorrel plant.[1][2] Animal breeding Jamaica Hope, Jamaica R...

Small language family in the East Sahara desert SaharanGeographicdistributionChad, Nigeria, Niger, Sudan, CameroonLinguistic classificationNilo-Saharan?Songhay-Saharan?SaharanSubdivisions Eastern Saharan Western Saharan Glottologsaha1256Range of the Saharan languages (in orange) The Saharan languages are a small family of languages across parts of the eastern Sahara, extending from northwestern Darfur to southern Libya, north and central Chad, eastern Niger and northeastern Nigeria. Noted Sah...

 

Carl Vogel, Kreidezeichnung von Johann Joseph Schmeller 1826 Carl Vogel, auch Karl Vogel (* 21. April 1798 in Dessau; † 27. April 1864 in Weimar) war ein deutscher Arzt, der als geheimer Hofrat und herzoglicher Leibarzt in Weimar tätig war. Inhaltsverzeichnis 1 Leben 2 Schriften 3 Literatur 4 Weblinks 5 Einzelnachweise Leben Vogel stammte aus Dessau. Von der Schulbank weg nahm er als Freiwilliger an den Befreiungskriegen teil. Nach dem Abitur begann er am 26. Oktober 1816 in Halle (Saale) ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!