In mathematics, specifically in order theory and functional analysis , if
C
{\displaystyle C}
is a cone at 0 in a vector space
X
{\displaystyle X}
such that
0
∈ ∈ -->
C
,
{\displaystyle 0\in C,}
then a subset
S
⊆ ⊆ -->
X
{\displaystyle S\subseteq X}
is said to be
C
{\displaystyle C}
-saturated if
S
=
[
S
]
C
,
{\displaystyle S=[S]_{C},}
where
[
S
]
C
:=
(
S
+
C
)
∩ ∩ -->
(
S
− − -->
C
)
.
{\displaystyle [S]_{C}:=(S+C)\cap (S-C).}
Given a subset
S
⊆ ⊆ -->
X
,
{\displaystyle S\subseteq X,}
the
C
{\displaystyle C}
-saturated hull of
S
{\displaystyle S}
is the smallest
C
{\displaystyle C}
-saturated subset of
X
{\displaystyle X}
that contains
S
.
{\displaystyle S.}
If
F
{\displaystyle {\mathcal {F}}}
is a collection of subsets of
X
{\displaystyle X}
then
[
F
]
C
:=
{
[
F
]
C
:
F
∈ ∈ -->
F
}
.
{\displaystyle \left[{\mathcal {F}}\right]_{C}:=\left\{[F]_{C}:F\in {\mathcal {F}}\right\}.}
If
T
{\displaystyle {\mathcal {T}}}
is a collection of subsets of
X
{\displaystyle X}
and if
F
{\displaystyle {\mathcal {F}}}
is a subset of
T
{\displaystyle {\mathcal {T}}}
then
F
{\displaystyle {\mathcal {F}}}
is a fundamental subfamily of
T
{\displaystyle {\mathcal {T}}}
if every
T
∈ ∈ -->
T
{\displaystyle T\in {\mathcal {T}}}
is contained as a subset of some element of
F
.
{\displaystyle {\mathcal {F}}.}
If
G
{\displaystyle {\mathcal {G}}}
is a family of subsets of a TVS
X
{\displaystyle X}
then a cone
C
{\displaystyle C}
in
X
{\displaystyle X}
is called a
G
{\displaystyle {\mathcal {G}}}
-cone if
{
[
G
]
C
¯ ¯ -->
:
G
∈ ∈ -->
G
}
{\displaystyle \left\{{\overline {[G]_{C}}}:G\in {\mathcal {G}}\right\}}
is a fundamental subfamily of
G
{\displaystyle {\mathcal {G}}}
and
C
{\displaystyle C}
is a strict
G
{\displaystyle {\mathcal {G}}}
-cone if
{
[
B
]
C
:
B
∈ ∈ -->
B
}
{\displaystyle \left\{[B]_{C}:B\in {\mathcal {B}}\right\}}
is a fundamental subfamily of
B
.
{\displaystyle {\mathcal {B}}.}
C
{\displaystyle C}
-saturated sets play an important role in the theory of ordered topological vector spaces and topological vector lattices .
Properties
If
X
{\displaystyle X}
is an ordered vector space with positive cone
C
{\displaystyle C}
then
[
S
]
C
=
⋃ ⋃ -->
{
[
x
,
y
]
:
x
,
y
∈ ∈ -->
S
}
.
{\displaystyle [S]_{C}=\bigcup \left\{[x,y]:x,y\in S\right\}.}
The map
S
↦ ↦ -->
[
S
]
C
{\displaystyle S\mapsto [S]_{C}}
is increasing; that is, if
R
⊆ ⊆ -->
S
{\displaystyle R\subseteq S}
then
[
R
]
C
⊆ ⊆ -->
[
S
]
C
.
{\displaystyle [R]_{C}\subseteq [S]_{C}.}
If
S
{\displaystyle S}
is convex then so is
[
S
]
C
.
{\displaystyle [S]_{C}.}
When
X
{\displaystyle X}
is considered as a vector field over
R
,
{\displaystyle \mathbb {R} ,}
then if
S
{\displaystyle S}
is balanced then so is
[
S
]
C
.
{\displaystyle [S]_{C}.}
If
F
{\displaystyle {\mathcal {F}}}
is a filter base (resp. a filter) in
X
{\displaystyle X}
then the same is true of
[
F
]
C
:=
{
[
F
]
C
:
F
∈ ∈ -->
F
}
.
{\displaystyle \left[{\mathcal {F}}\right]_{C}:=\left\{[F]_{C}:F\in {\mathcal {F}}\right\}.}
See also
References
Bibliography
Spaces
Theorems Operators Algebras Open problems Applications Advanced topics
Basic concepts Types of orders/spaces Types of elements/subsets Topologies/Convergence Operators Main results