Chiral knot

In the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible.

There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, invertible, positively amphicheiral noninvertible, negatively amphicheiral noninvertible, and fully amphicheiral invertible.[1]

Background

The possible chirality of certain knots was suspected since 1847 when Johann Listing asserted that the trefoil was chiral,[2] and this was proven by Max Dehn in 1914. P. G. Tait found all amphicheiral knots up to 10 crossings and conjectured that all amphicheiral knots had even crossing number. Mary Gertrude Haseman found all 12-crossing and many 14-crossing amphicheiral knots in the late 1910s.[3][4] But a counterexample to Tait's conjecture, a 15-crossing amphicheiral knot, was found by Jim Hoste, Morwen Thistlethwaite, and Jeff Weeks in 1998.[5] However, Tait's conjecture was proven true for prime, alternating knots.[6]

Number of knots of each type of chirality for each crossing number
Number of crossings 3 4 5 6 7 8 9 10 11 12 13 14 15 16 OEIS sequence
Chiral knots 1 0 2 2 7 16 49 152 552 2118 9988 46698 253292 1387166 N/A
Invertible knots 1 0 2 2 7 16 47 125 365 1015 3069 8813 26712 78717 A051769
Fully chiral knots 0 0 0 0 0 0 2 27 187 1103 6919 37885 226580 1308449 A051766
Amphicheiral knots 0 1 0 1 0 5 0 13 0 58 0 274 1 1539 A052401
Positive Amphicheiral Noninvertible knots 0 0 0 0 0 0 0 0 0 1 0 6 0 65 A051767
Negative Amphicheiral Noninvertible knots 0 0 0 0 0 1 0 6 0 40 0 227 1 1361 A051768
Fully Amphicheiral knots 0 1 0 1 0 4 0 7 0 17 0 41 0 113 A052400

The simplest chiral knot is the trefoil knot, which was shown to be chiral by Max Dehn. All nontrivial torus knots are chiral. The Alexander polynomial cannot distinguish a knot from its mirror image, but the Jones polynomial can in some cases; if Vk(q) ≠ Vk(q−1), then the knot is chiral, however the converse is not true. The HOMFLY polynomial is even better at detecting chirality, but there is no known polynomial knot invariant that can fully detect chirality.[7]

Invertible knot

A chiral knot that can be smoothly deformed to itself with the opposite orientation is classified as a invertible knot.[8] Examples include the trefoil knot.

Fully chiral knot

If a knot is not equivalent to its inverse or its mirror image, it is a fully chiral knot, for example the 9 32 knot.[8]

Amphicheiral knot

The figure-eight knot is the simplest amphicheiral knot.

An amphicheiral knot is one which has an orientation-reversing self-homeomorphism of the 3-sphere, α, fixing the knot set-wise. All amphicheiral alternating knots have even crossing number. The first amphicheiral knot with odd crossing number is a 15-crossing knot discovered by Hoste et al.[6]

Fully amphicheiral

If a knot is isotopic to both its reverse and its mirror image, it is fully amphicheiral. The simplest knot with this property is the figure-eight knot.

Positive amphicheiral

If the self-homeomorphism, α, preserves the orientation of the knot, it is said to be positive amphicheiral. This is equivalent to the knot being isotopic to its mirror. No knots with crossing number smaller than twelve are positive amphicheiral and noninvertible .[8]

Negative amphicheiral

The first negative amphicheiral knot.

If the self-homeomorphism, α, reverses the orientation of the knot, it is said to be negative amphicheiral. This is equivalent to the knot being isotopic to the reverse of its mirror image. The noninvertible knot with this property that has the fewest crossings is the knot 817.[8]

References

  1. ^ Hoste, Jim; Thistlethwaite, Morwen; Weeks, Jeff (1998), "The first 1,701,936 knots" (PDF), The Mathematical Intelligencer, 20 (4): 33–48, doi:10.1007/BF03025227, MR 1646740, S2CID 18027155, archived from the original (PDF) on 2013-12-15.
  2. ^ Przytycki, Józef H. (1998). "Classical Roots of Knot Theory". Chaos, Solitons and Fractals. 9 (4/5): 531–45. Bibcode:1998CSF.....9..531P. doi:10.1016/S0960-0779(97)00107-0.
  3. ^ Haseman, Mary Gertrude (1918). "XI.—On Knots, with a Census of the Amphicheirals with Twelve Crossings". Trans. R. Soc. Edinb. 52 (1): 235–55. doi:10.1017/S0080456800012102. S2CID 123957148.
  4. ^ Haseman, Mary Gertrude (1920). "XXIII.—Amphicheiral Knots". Trans. R. Soc. Edinb. 52 (3): 597–602. doi:10.1017/S0080456800004476. S2CID 124014620.
  5. ^ Hoste, Jim; Thistlethwaite, Morwen; Weeks, Jeff (1998). "The First 1,701,936 Knots". Math. Intell. 20 (4): 33–48. doi:10.1007/BF03025227. S2CID 18027155.
  6. ^ a b Weisstein, Eric W. "Amphichiral Knot". MathWorld. Accessed: May 5, 2013.
  7. ^ Ramadevi, P.; Govindarajan, T.R.; Kaul, R.K. (1994). "Chirality of Knots 942 and 1071 and Chern-Simons Theory"". Mod. Phys. Lett. A. 9 (34): 3205–18. arXiv:hep-th/9401095. Bibcode:1994MPLA....9.3205R. doi:10.1142/S0217732394003026. S2CID 119143024.
  8. ^ a b c d "Three Dimensional Invariants", The Knot Atlas.

Read other articles:

JadesoturiPoster FilmSutradara Antti-Jussi Annila Produser Petri Jokiranta Tero Kaukomaa Jonah Greenberg Ditulis oleh Antti-Jussi Annila Petri Jokiranta CeritaIiro KüttnerPemeranTommi EronenZhang JingchuKrista KosonenMarkku PeltolaPenata musikSamuli KosminenKimmo PohjonenSinematograferHenri BlombergPenyuntingIikka HesseDistributorBlind Spot PicturesTanggal rilis 13 Oktober 2006 24 Oktober 2006 20 Oktober 2006Durasi110 menitNegara Finlandia Tiongkok Estonia Belanda Bahasa Finlandia Tion...

 

 

МуаянвікMoyenvic   Країна  Франція Регіон Гранд-Ест  Департамент Мозель  Округ Саррбур-Шато-Сален Кантон Вік-сюр-Сей Код INSEE 57490 Поштові індекси 57630 Координати 48°46′41″ пн. ш. 6°33′47″ сх. д.H G O Висота 198 - 317 м.н.р.м. Площа 14,48 км² Населення 341 (01-2020[1]) Густота 25,...

 

 

Про інших людей з таким конгоменом див. Італік (когномен). Марк Стацій Пріск Ліциній Італіклат. Marcus Statius Priscus Licinius ItalicusНародився невідомоПомер 164(0164)·чумаПідданство Римська імперіяДіяльність політик, офіцер, військовослужбовецьВідомий завдяки діячочільникПосада ко...

Muhammad Yusran LalogauBupati Pangkajene dan Kepulauan ke-11PetahanaMulai menjabat 26 Februari 2021PresidenJoko WidodoGubernurNurdin Abdullah Andi Sudirman Sulaiman Bahtiar Baharuddin (Pj.)WakilSyahban SammanaPendahuluSyamsuddin A. HamidKetua Dewan Perwakilan Rakyat Daerah Kabupaten Pangkajene dan KepulauanMasa jabatan21 Oktober 2019 – 3 September 2020PresidenJoko WidodoGubernurNurdin AbdullahPendahuluAndi Ilham ZainuddinPenggantiSofyan Razak (Plt.)Haris Gani Informasi prib...

 

 

|сайт2= |сайт1= Американське філософське товариство Тип організаціянаукове товариствоЗасновник Бенджамін ФранклінЗасновано 1743Сфера філософіяКраїна  США[1]Штаб-квартира Філадельфія (39°56′55″ пн. ш. 75°08′59″ зх. д. / 39.94875300002777863° пн. ш. 75.149839000028°...

 

 

多哥共产党Parti communiste du Togo多哥共产党标志成立1980年5月4日 (1980-05-04)前身多哥共产主义团体党报《革命》青年组织多哥共产主义青年组织意識形態共产主义马克思列宁主义霍查主义反修正主义政治立場极左翼国际组织革命政党和组织国际协调官方色彩红色官方网站www.pctogo.org多哥政治政党 · 选举 共產黨 欧洲 挪威红党 挪威共产党 瑞典共产党 (1995年) 瑞典共产党 (2005年)

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Kang Hyeon-su (lahir 18 Juni 1996) adalah seorang penyanyi dan penari asal Korea Selatan. Hyeonsu juga penari utama dan punya bakat untuk membuat koreografi pada grup vokal laki-laki Korea Selatan NIK. Ia pernah debut di 2013 dengan grup LC9, yang kem...

 

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Oktober 2016. Dong Wang Gong Dong Wang Gong (Hanzi= 东王公; pinyin= Dōng wáng gōng; baca=Tung Wang Kun; lit. Paduka Raja dari Timur) atau Dong Hua Di Jun (Hanzi= 東華帝君; Hokkien=Tong Hua Te Kun) adalah dewa penguasa langit timur. Ia tercipta dari intisar...

 

 

The EMRC logo The Eastern Metropolitan Regional Council (EMRC) is a regional local government body in Perth, Western Australia. The EMRC is composed of five member councils – the Town of Bassendean, City of Bayswater, City of Kalamunda, Shire of Mundaring and City of Swan.[1] EMRC was constituted in November 1993 and while its original function was to provide large scale waste management and disposal services[2] in Perth's eastern region,[3] this has been extended to...

Hundreds of copies of a provisional constitution were found among John Brown's papers after his 1859 raid on Harper's Ferry, Virginia. It called for a new state in the Appalachian Mountains, a sort of West Virginia, populated by volunteer freedom fighters and escaped slaves from plantations, which were at lower altitudes. It was introduced into evidence at his trial as evidence of sedition. John Brown also wrote, at about the same time, a little-known Declaration of Liberty, inspired by the U...

 

 

Decisiones Extremas Serie de televisiónCreado por Aurelio Valcárcel CarrollPresentado por Candela FerroMabel KremerRashel DíazCynthia OlavarríaNarrado por Ernesto Zuazo OrtuñoPaís de origen  Estados UnidosColombia Colombia Puerto Rico MéxicoIdioma(s) original(es) EspañolN.º de temporadas 4N.º de episodios 350ProducciónProductor(es) ejecutivo(s) Hugo León FerrerProductor(es) Jorge Sastoque RoaEmpresa(s) productora(s) RTI TelevisiónDistribuidor Telemundo InternacionalUniv...

 

 

Julius Maada BioBio pada tahun 2023Presiden Sierra LeonePetahanaMulai menjabat 4 April 2018Wakil PresidenMohamed Juldeh JallohKetua MenteriDavid J. FrancisJacob Jusu SaffaPendahuluErnest Bai KoromaKetua Dewan Pemerintahan Nasional SementaraMasa jabatan16 Januari 1996 – 29 Maret 1996WakilKomba MondehPendahuluValentine StrasserPenggantiAhmad Tejan KabbahWakil Ketua Dewan Pemerintahan Nasional SementaraMasa jabatanJuni 1993 – Maret 1995ChairmanValentine StrasserPendahul...

American singer and actress Teyana Taylor-ShumpertTaylor in April 2023BornTeyana Me’Shay Jacqueli Taylor[1] (1990-12-10) December 10, 1990 (age 32)New York City, U.S.Other namesSpike Tee[2]Jimmy Neutch[3]Occupations Actress singer songwriter dancer model music video director choreographer Years active2005–presentSpouse Iman Shumpert ​ ​(m. 2016; sep. 2023)​Children2AwardsFull listMusical careerGenres R&...

 

 

Aspect of American military history Grave of a Jewish American soldier at Normandy. An inscription on the stone reveals that the soldier was a first lieutenant from New York who served in the 411th Antiaircraft Artillery Gun Battalion.[1][2] Jewish Americans have served in the United States armed forces dating back to before the colonial era, when Jews had served in militias of the Thirteen Colonies. Jewish military personnel have served in all branches of the armed forces and...

 

 

KrembanganKalurahanPeta lokasi Desa KrembanganNegara IndonesiaProvinsiDaerah Istimewa YogyakartaKabupatenKulon ProgoKecamatanPanjatanKode Kemendagri34.01.03.2011 Luas591,49 HaJumlah penduduk5.795 jiwa/ 1.747 KKKepadatan980 Jiwa/km2 Krembangan adalah desa di kecamatan Panjatan, Kulon Progo, Daerah Istimewa Yogyakarta, Indonesia. Berjarak sekitar 30 kilometer dari kota Yogyakarta ke arah barat, 9 kilometer tenggara kota Wates Nama Krembangan berasal dari kata rembang, yang berarti panen te...

Play written by Dennis Kelly Osama the Herocover of Osama the Hero by Dennis KellyWritten byDennis KellyCharacters Gary (Male, seventeen) Francis (Male, late twenties) Louise (Female, mid-twenties) Mandy (Female, fifteen / sixteen) Mark (Male, fifty) Date premiered2005Place premieredHampstead Theatre, LondonOriginal languageEnglishGenrein-yer-face theatre Osama the Hero is a three act in-yer-face play by Dennis Kelly. The first two acts were staged as part of the Wild Lunch series by Paines P...

 

 

Pour les articles homonymes, voir L'Assassinat du duc de Guise. L'Assassinat du duc de Guise Scène du film L'Assassinat du duc de Guise (1897). Données clés Réalisation Georges Hatot et Alexandre Promio Acteurs principaux Beauvais Sociétés de production Frères Lumière Pays de production France Genre Film historique Durée 1 min. Sortie 1897 Série Vues historiques Mort de Charles Ier Pour plus de détails, voir Fiche technique et Distribution L'Assassinat du duc de Guise est un film f...

 

 

Опис схема штурмгешуц IV. ілюстрація до статті про штурмову гармату Джерело http://ruffles.wikia.com/wiki/File:0106-1.jpg Час створення 2010 Автор зображення права на картинку, імовірно, належать сайту ruffles.wikia.com Ліцензія Ця робота є невільною — тобто, не відповідає визначенню вільних творів...

IV KorpusЧетвертий корпус Historia Państwo  Zachodnioukraińska Republika Ludowa Sformowanie 1919 Rozformowanie 1920 Organizacja Rodzaj sił zbrojnych Wojska lądowe IV Korpus – korpus Ukraińskiej Armii Halickiej, którego formowanie nie zostało ukończone z powodu ofensywy polskiej i przejścia oddziałów UHA za Zbrucz, na teren Ukraińskiej Republiki Ludowej. W czerwcu 1919 Naczelna Komenda UHA z gen. Ołeksanderm Hrekowem podjęła decyzję utworzenia 8 nowych bry...

 

 

  لمعانٍ أخرى، طالع ديك كلارك (توضيح). ديك كلارك (بالإنجليزية: Richard C. Clark)‏  مناصب عضو مجلس الشيوخ الأمريكي[1]   عضو خلال الفترة3 يناير 1973  – 3 يناير 1975  الدائرة الإنتخابية مقد دائرة آيوا الثانية  [لغات أخرى]‏  فترة برلمانية الكونغرس الأمريكي الـ93 ...

 

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!