for a, b > 1, x, y > 0 is x = 3, a = 2, y = 2, b = 3.
History
The history of the problem dates back at least to Gersonides, who proved a special case of the conjecture in 1343 where (x, y) was restricted to be (2, 3) or (3, 2). The first significant progress after Catalan made his conjecture came in 1850 when Victor-Amédée Lebesgue dealt with the case b = 2.[3]
In 1976, Robert Tijdeman applied Baker's method in transcendence theory to establish a bound on a,b and used existing results bounding x,y in terms of a, b to give an effective upper bound for x,y,a,b. Michel Langevin computed a value of for the bound,[4] resolving Catalan's conjecture for all but a finite number of cases.
Pillai's conjecture concerns a general difference of perfect powers (sequence A001597 in the OEIS): it is an open problem initially proposed by S. S. Pillai, who conjectured that the gaps in the sequence of perfect powers tend to infinity. This is equivalent to saying that each positive integer occurs only finitely many times as a difference of perfect powers: more generally, in 1931 Pillai conjectured that for fixed positive integers A, B, C the equation has only finitely many solutions (x, y, m, n) with (m, n) ≠ (2, 2). Pillai proved that for fixed A, B, x, y, and for any λ less than 1, we have uniformly in m and n.[7]
Pillai's conjecture means that for every natural number n, there are only finitely many pairs of perfect powers with difference n. The list below shows, for n ≤ 64, all solutions for perfect powers less than 1018, such that the exponent of both powers is greater than 1. The number of such solutions for each n is listed at OEIS: A076427. See also OEIS: A103953 for the smallest solution (> 0).
n
solution count
numbers k such that k and k + n are both perfect powers
n
solution count
numbers k such that k and k + n are both perfect powers
Cohen, Henri (2005). Démonstration de la conjecture de Catalan [A proof of the Catalan conjecture]. Théorie algorithmique des nombres et équations diophantiennes (in French). Palaiseau: Éditions de l'École Polytechnique. pp. 1–83. ISBN2-7302-1293-0. MR0222434.