Breit–Wheeler process

The Breit–Wheeler process is the creation of an electron–positron pair following the collision of two high-energy photons (gamma photons).
The nonlinear Breit–Wheeler process or multiphoton Breit–Wheeler is the creation of an electron-positron pair from the decay of a high-energy photon (gamma photon) interacting with a strong electromagnetic field such as a laser.

The Breit–Wheeler process or Breit–Wheeler pair production is a proposed physical process in which a positronelectron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e where γ and γ′ are two light quanta (for example, gamma photons).[1]

The multiphoton Breit–Wheeler process, also referred to as nonlinear Breit–Wheeler or strong field Breit–Wheeler in the literature, occurs when a high-energy probe photon decays into pairs propagating through a strong electromagnetic field (for example, a laser pulse).[2] In contrast with the linear process, this can take the form of γ + n ω → e+ e, where n represents the number of photons, and ω represents the coherent laser field.

The inverse process, e+ e → γ γ′, in which an electron and a positron collide and annihilate to generate a pair of gamma photons, is known as electron–positron annihilation or the Dirac process[3] for the name of the physicist who first described it theoretically and anticipated the Breit–Wheeler process.

This mechanism is theoretically characterized by a very weak probability, so producing a significant number of pairs requires two extremely bright, collimated sources of photons having photon energy close to or above the electron and positron rest mass energy. Manufacturing such a source, for instance, a gamma-ray laser, is still a technological challenge. In many experimental configurations, pure Breit–Wheeler is dominated by other more efficient pair creation processes that screen pairs produced via this mechanism.[2][4][5] The Dirac process (pair annihilation) has, on the other hand, been extensively verified. This is also the case for the multi-photon Breit–Wheeler, which was observed at the Stanford Linear Accelerator Center in 1997 by colliding high-energy electrons with a counter-propagating terawatt laser pulse.[6][7]

Although this mechanism is still one of the most difficult to be observed experimentally on Earth, it is of considerable importance for the absorption of high-energy photons travelling cosmic distances.[8][9][5]

The photon–photon and the multiphoton Breit–Wheeler processes are described theoretically by the theory of quantum electrodynamics.

History

The photon–photon Breit–Wheeler process was described theoretically by Gregory Breit and John A. Wheeler in 1934 in Physical Review.[1] It followed previous theoretical work of Paul Dirac[3] on antimatter and pair annihilation. In 1928, Paul Dirac's work proposed that electrons could have positive and negative energy states following the framework of relativistic quantum theory but did not explicitly predict the existence of a new particle.

Experimental observations

Photon–photon Breit–Wheeler possible experimental configurations

Although the process is one of the manifestations of the mass–energy equivalence, as of 2017, the pure Breit–Wheeler has never been observed in practice because of the difficulty in preparing colliding gamma ray beams and the very weak probability of this mechanism. Recently, different teams have proposed novel theoretical studies on possible experimental configurations to finally observe it on Earth.

In 2014, physicists at Imperial College London proposed a relatively simple way to physically demonstrate the Breit–Wheeler process.[10] The collider experiment that the physicists proposed involves two key steps. First, they would use an extremely powerful high-intensity laser to accelerate electrons to nearly the speed of light. They would then fire these electrons into a slab of gold to create a beam of photons a billion times more energetic than those of visible light. The next stage of the experiment involves a tiny gold can called a hohlraum (German for 'empty room' or 'cavity'). Scientists would fire a high-energy laser at the inner surface of this hohlraum to create a thermal radiation field. They would then direct the photon beam from the first stage of the experiment through the centre of the hohlraum, causing the photons from the two sources to collide and form electrons and positrons. It would then be possible to detect the formation of the electrons and positrons when they exited the can.[10] Monte Carlo simulations suggest that this technique is capable of producing of the order of 105 Breit–Wheeler pairs in a single shot.[11][12]

In 2016, a second novel experimental setup was proposed theoretically[4] to demonstrate and study the Breit–Wheeler process by colliding two high-energy photon sources (composed of non-coherent hard x-ray and gamma-ray photons) generated from the interaction of two extremely intense lasers on solid thin foils or gas jets. The forthcoming short-pulse extremely intense lasers, laser interaction with solid target will be the place of strong radiative effects driven by the nonlinear inverse quantum scattering. This effect, negligible so far, will become a dominant cooling mechanism for the extremely relativistic electrons accelerated above the 100 MeV level at the laser-solid interface via different mechanisms.

Multiphoton Breit–Wheeler experiments

The multiphoton Breit–Wheeler process has already been observed and studied experimentally. One of the most efficient configurations to maximize the multiphoton Breit–Wheeler pair production consists on colliding head-on a bunch of gamma photon with a counter-propagating (or with a slight collision angle, the co-propagating configuration being the less efficient configuration) ultra-high intensity laser pulse. To first create the photons and then have the pair production in an all-in-one setup, the similar configuration can be used by colliding GeV electrons. Depending on the laser intensity, these electrons will first radiate gamma photons via the so-called non-linear inverse Compton scattering mechanism when interacting with the laser pulse. Still interacting with the laser, the photons then turn into multiphoton Breit–Wheeler electron–positron pairs.

This method was used in 1997 at the Stanford Linear Accelerator Center. Researchers were able to conduct the multi-photon Breit–Wheeler process using electrons to first create high-energy photons,[13] which then underwent multiple collisions to produce electrons and positrons, all within the same chamber.[6][7][14] Electrons were accelerated in the linear accelerator to an energy of 46.6 GeV before being sent head-on into a Neodymium (Nd:glass) linear polarized laser of intensity 1018 W/cm2 (maximal electric field amplitude of around 6×109 V/m), of wavelength 527 nanometers and duration 1.6 picoseconds. In this configuration, it has been estimated that photons of energy up to 29 GeV were generated. This led to the yield of 106 ±14 positrons with a broad energy spectrum in the GeV level (peak around 13 GeV).

The aforementioned experiment may be reproduced in the future at SLAC with more powerful laser technologies. The use of higher laser intensities (1020 W/cm2) is now easily achievable with short-pulse titanium-sapphire laser solutions that would significantly enhance process efficiencies (inverse nonlinear Compton and nonlinear Breit–Wheeler pair creation) leading to several orders of magnitude higher antimatter production, enabling higher-resolution measurements, additional mass-shift, as well as nonlinear and spin effects.[15]

The extreme intensities expected to be available in future multi-petawatt laser systems will allow all-optical, laser–electron collision experiments where the electron beam is generated from direct laser interaction with a gas jet in a so-called laser wakefield acceleration regime. The resulting electron bunch is then made to interact with a second high-power laser in order to study QED processes. The feasibility of an all-optical multi-photon Breit–Wheeler pair production scheme has first been proposed theoretically in [16] Implementation of this scheme is restricted to multi-beam short-pulse extreme-intensity laser facilities such as the CILEX-Apollon[17] and ELI systems[18] (CPA titanium sapphire technology at 0.8 micrometer, duration of 15–30 femtoseconds). The generation of electron beams of few GeV and few nanocoulomb is possible with a first laser of 1 petawatt combined with the use of tuned and optimized gas-jet density profiles such as two-step profiles. Strong pair generation can be achieved by colliding head-on this electron beam with a second laser of intensity above 1022 W/cm2. In this configuration at this level of intensity, theoretical studies predict that several hundreds of pico-Coulombs of antimatter could be produced.[19] This experimental setup could even be one of the most prolific positron yield factory. This all-optical scenario may be preliminary tested with lower laser intensities of the order of 1021 W/cm2.

In July 2021 evidence consistent with the process was reported by the STAR detector one of the four experiments at the Relativistic Heavy Ion Collider although it was unclear if it was due to massless photons or massive virtual photons, vacuum birefringence was also studied obtaining evidence enough to claim the first known observation of the process.[20][21][22]

See also

References

  1. ^ a b G. Breit; John A. Wheeler (15 December 1934). "Collision of Two Light Quanta". Physical Review. 46 (12): 1087–1091. Bibcode:1934PhRv...46.1087B. doi:10.1103/PhysRev.46.1087.
  2. ^ a b A. I. Titov; B. Kämpfer; H. Takabe; A. Hosaka (10 April 2013). "Breit–Wheeler process in very short electromagnetic pulses". Physical Review. 87 (4): 042106. arXiv:1303.6487. Bibcode:2013PhRvA..87d2106T. doi:10.1103/PhysRevA.87.042106. S2CID 118532838.
  3. ^ a b Dirac, P. a. M. (July 1930). "On the Annihilation of Electrons and Protons". Mathematical Proceedings of the Cambridge Philosophical Society. 26 (3): 361–375. Bibcode:1930PCPS...26..361D. doi:10.1017/S0305004100016091. ISSN 1469-8064. S2CID 122633558.
  4. ^ a b Ribeyre, X.; d'Humières, E.; Jansen, O.; Jequier, S.; Tikhonchuk, V. T.; Lobet, M. (2016). "Pair creation in collision of γ-ray beams produced with high-intensity lasers". Physical Review E. 93 (1): 013201. arXiv:1504.07868. Bibcode:2016PhRvE..93a3201R. doi:10.1103/PhysRevE.93.013201. ISSN 2470-0045. PMID 26871177. S2CID 42770145. Direct production of electron–positron pairs in two-photon collisions, the Breit–Wheeler process, is one of the basic processes in the universe. However, it has never been directly observed in the laboratory because of the absence of intense enough γ-ray sources
  5. ^ a b Ruffini, Remo; Vereshchagin, Gregory; Xue, She-Sheng (2010-02-01). "Electron–positron pairs in physics and astrophysics: From heavy nuclei to black holes". Physics Reports. 487 (1): 1–140. arXiv:0910.0974. Bibcode:2010PhR...487....1R. doi:10.1016/j.physrep.2009.10.004. S2CID 119275572.
  6. ^ a b Bamber, C.; Boege, S. J.; Koffas, T.; Kotseroglou, T.; Melissinos, A. C.; Meyerhofer, D. D.; Reis, D. A.; Ragg, W.; Bula, C. (1999-11-01). "Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses". Physical Review D. 60 (9): 092004. Bibcode:1999PhRvD..60i2004B. doi:10.1103/PhysRevD.60.092004. ISSN 1550-7998.
  7. ^ a b Bamber, C.; Berridge, S. C.; Boege, S. J.; Bugg, W. M.; Bula, C.; Burke, D. L.; Field, R. C.; Horton-Smith, G.; Koffas, T. (1997-02-25). "Positron production in multiphoton light-by-light scattering". AIP Conference Proceedings. 396 (1): 165–177. Bibcode:1997AIPC..396..165B. CiteSeerX 10.1.1.388.7683. doi:10.1063/1.52962. ISSN 0094-243X.
  8. ^ Nikishov, A. I. (1961-08-01). "Absorption of High Energy Photons in the Universe". Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (in Russian). 41. OSTI 4836265.
  9. ^ Gould, Robert J.; Schréder, Gérard P. (1967-03-25). "Pair Production in Photon–Photon Collisions". Physical Review. 155 (5): 1404–1407. Bibcode:1967PhRv..155.1404G. doi:10.1103/PhysRev.155.1404.
  10. ^ a b "Scientists discover how to turn light into matter after 80-year quest". Phys.org. 18 May 2014. Retrieved 24 July 2015.
  11. ^ O. J. Pike; F. Mackenroth; E. G. Hill; S. J. Rose (18 May 2014). "A photon–photon collider in a vacuum hohlraum". Nature Photonics. 8 (6): 434–436. Bibcode:2014NaPho...8..434P. doi:10.1038/nphoton.2014.95. S2CID 121658592.
  12. ^ Thomas, Alexander (June 2014). "Optical physics: Antimatter creation in an X-ray bath". Nature Photonics. 8 (6): 429–431. Bibcode:2014NaPho...8..429T. doi:10.1038/nphoton.2014.118. ISSN 1749-4885. S2CID 123676974.
  13. ^ Bula, C.; McDonald, K. T.; Prebys, E. J.; Bamber, C.; Boege, S.; Kotseroglou, T.; Melissinos, A. C.; Meyerhofer, D. D.; Ragg, W. (1996-04-22). "Observation of Nonlinear Effects in Compton Scattering". Physical Review Letters. 76 (17): 3116–3119. Bibcode:1996PhRvL..76.3116B. doi:10.1103/PhysRevLett.76.3116. PMID 10060879. Archived from the original on 2019-06-21. Retrieved 2019-06-21.
  14. ^ Akshat Rathi (19 May 2014). ""Supernova in a bottle" could help create matter from light". Ars Technica. Retrieved 20 May 2014.
  15. ^ Hartin, A.; Porto, S.; Moortgat-Pick, G. (2014-04-03). "Testing nonlinear-QED at the future linear collider with an intense laser". arXiv:1404.0810 [hep-ph].
  16. ^ Sokolov, Igor V.; Naumova, Natalia M.; Nees, John A.; Mourou, Gérard A. (2010-11-04). "Pair Creation in QED-Strong Pulsed Laser Fields Interacting with Electron Beams". Physical Review Letters. 105 (19): 195005. arXiv:1009.0703. Bibcode:2010PhRvL.105s5005S. doi:10.1103/PhysRevLett.105.195005. PMID 21231176. S2CID 6777106.
  17. ^ Cros, B.; Paradkar, B. S.; Davoine, X.; Chancé, A.; Desforges, F. G.; Dobosz-Dufrénoy, S.; Delerue, N.; Ju, J.; Audet, T. L. (2014-03-11). "Laser plasma acceleration of electrons with multi-PW laser beams in the frame of CILEX". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Proceedings of the first European Advanced Accelerator Concepts Workshop 2013. 740: 27–33. Bibcode:2014NIMPA.740...27C. doi:10.1016/j.nima.2013.10.090.
  18. ^ Mourou, Gérard; Tajima, Toshiki (2011-07-01). "The Extreme Light Infrastructure: Optics' Next Horizon". Optics and Photonics News. 22 (7): 47–51. doi:10.1364/OPN.22.7.000047. ISSN 1541-3721.
  19. ^ Lobet, M.; Davoine, X.; d’Humières, E.; Gremillet, L. (2017). "Generation of high-energy electron–positron pairs in the collision of a laser-accelerated electron beam with a multipetawatt laser" (PDF). Physical Review Special Topics: Accelerators and Beams. 20 (4): 043401. Bibcode:2017PhRvS..20d3401L. doi:10.1103/physrevaccelbeams.20.043401. S2CID 124892081.
  20. ^ STAR Collaboration; Adam, J.; Adamczyk, L.; Adams, J. R.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aparin, A. (2021-07-27). "Measurement of e+e Momentum and Angular Distributions from Linearly Polarized Photon Collisions". Physical Review Letters. 127 (5): 052302. arXiv:1910.12400. Bibcode:2021PhRvL.127e2302A. doi:10.1103/PhysRevLett.127.052302. PMID 34397228. S2CID 236906272.
  21. ^ "Collisions of Light Produce Matter/Antimatter from Pure Energy". Brookhaven National Laboratory. Retrieved 2021-10-10.
  22. ^ "Colliding photons were spotted making matter. But are the photons 'real'?". Science News. 2021-08-09. Retrieved 2021-09-02.


Read other articles:

Chandra Warsenanto SukotjoKomandan Pusat Polisi Militer Angkatan Darat ke-32Masa jabatan8 Februari 2021 – 14 Januari 2023PendahuluDodik Wijanarko Informasi pribadiLahir14 Januari 1965 (umur 58) Bandung, Jawa BaratSuami/istriNy. Tamara YuanitaAnak1. Arnachani Riaseta, B.A., M.Sc.2. Yosifebi Ramadhani, S.I.Kom., M.Sc.Alma materAkademi Militer (1988-A)Karier militerPihak IndonesiaDinas/cabang TNI Angkatan DaratMasa dinas1988—2023Pangkat Letnan Jenderal TNISatuanPo...

 

Penyuntingan Artikel oleh pengguna baru atau anonim untuk saat ini tidak diizinkan.Lihat kebijakan pelindungan dan log pelindungan untuk informasi selengkapnya. Jika Anda tidak dapat menyunting Artikel ini dan Anda ingin melakukannya, Anda dapat memohon permintaan penyuntingan, diskusikan perubahan yang ingin dilakukan di halaman pembicaraan, memohon untuk melepaskan pelindungan, masuk, atau buatlah sebuah akun.Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon ...

 

Lalu Rudy Irham SrigedeKomandan Korem 162/Wira BhaktiMasa jabatan6 Desember 2021 – 30 Mei 2022PendahuluAhmad Rizal RamdhaniPenggantiSudarwo Aris NurcahyoMasa jabatan2015–2016PendahuluKuat BudimanPenggantiFarid Makruf Informasi pribadiLahir29 Juni 1964 (umur 59)Mataram, Nusa Tenggara BaratSuami/istriNy. Rineke Sawitri Mayangsari, S.H.Anak1. dr. Baiq Raissa Almira Hamsari Putri2. Baiq Sephira Irene PutriOrang tuaLalu Srigede (ayah)Baiq Nasehan (ibu)Alma materAkademi Militer (1...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2019) إلين كاسيدي معلومات شخصية الميلاد 15 مارس 1930  الوفاة أبريل 2014 (83–84 سنة)  أورانج  مواطنة أستراليا  الحياة العملية المدرسة الأم جامعة سيدني  المه...

 

بنك التنمية الأفريقي هي مؤسسة تمويل تنموية متعددة الأطراف تم إنشائها للمساهمة في التنمية الاقتصادية والتقدم الاجتماعي في البلدان الأفريقية. تأسس مصرف التنمية الأفريقي في عام 1964 ويتألف من ثلاثة كيانات: البنك الأفريقي للتنمية، وصندوق التنمية الأفريقي والصندوق الاستئماني ا

 

Temen Tapi DemenGenre Drama Roman PembuatMD EntertainmentDitulis olehDono IndartoSkenarioDono IndartoCeritaAi ManafPemeran Laudya C. Bella Andrew Andika Donita Rama Michael Elma Theana Peggy Melati Sukma Zainal Abidin Domba Udin Nga Nga Bemby Putuanda Penggubah lagu temaST12Lagu pembukaGula dan Semut — ST12Lagu penutupGula dan Semut — ST12Negara asalIndonesiaBahasa asliBahasa IndonesiaJmlh. musim1Jmlh. episode28ProduksiProduser Dhamoo Punjabi Manoj Punjabi Pengaturan kameraMulti-kameraDur...

Begraafplaats van Denderwindeke Plaats Denderwindeke  België Portaal    Mens & maatschappij De Begraafplaats van Denderwindeke is een gemeentelijke begraafplaats in het Belgische dorp Denderwindeke, een deelgemeente van Ninove. Ze ligt op 650 m van de Sint-Pieterskerk in het dorpscentrum. De straat waar de begraafplaats zich bevindt noemt Neuringen maar deze straat wordt vaak in de volksmond De kerkhofstraat genoemd. Brits oorlogsgraf Denderwindeke Communal Cemetery Locati...

 

Genus of flowering plants × Amelasorbus Here labeled as × Amelasorbus raciborskiana Scientific classification Kingdom: Plantae Clade: Tracheophytes Clade: Angiosperms Clade: Eudicots Clade: Rosids Order: Rosales Family: Rosaceae Subfamily: Amygdaloideae Tribe: Maleae Subtribe: Malinae Genus: × AmelasorbusRehder Species: × A. jackii Binomial name × Amelasorbus jackiiRehder × Amelasorbus is a flowering plant in the family Rosaceae. A naturally occurring hybrid, i...

 

Shopping mall in California, U.S.Vallco Shopping MallInterior view of Vallco Shopping Mall, then called Cupertino Square. This section of the mall was demolished in late 2019.LocationCupertino, California, U.S.Coordinates37°19′35″N 122°00′52″W / 37.3263°N 122.0144°W / 37.3263; -122.0144Address10123 N Wolfe RoadOpening dateSeptember 1, 1976DeveloperVallco Fashion Park Venture (Phillip Lyon, Gordon & Co. and Vallco Park Ltd.)OwnerSand Hill Property Co.No....

本條目存在以下問題,請協助改善本條目或在討論頁針對議題發表看法。 此生者传记条目需要补充更多可供查證的来源。 (2018年8月23日)请协助補充可靠来源,无法查证的在世人物内容将被立即移除。 此條目包含過多僅特定讀者會感興趣的過度細節內容。 (2018年8月23日)請重新整理本條目以切合主題,並移除与維基百科內容方針相悖的過度細節內容。詳細信息請參見討論頁。 ...

 

Юлия Герасимовна Егошина Дата рождения 4 марта 1903(1903-03-04) Место рождения Коряковцы, Уржумский уезд, Вятская губерния, Российская империя Дата смерти 7 июня 1985(1985-06-07) (82 года) Место смерти Переделкино, Ново-Переделкино, Солнцевский район, Москва, СССР Страна  Российск...

 

Islam menurut negara Afrika Aljazair Angola Benin Botswana Burkina Faso Burundi Kamerun Tanjung Verde Republik Afrika Tengah Chad Komoro Republik Demokratik Kongo Republik Kongo Djibouti Mesir Guinea Khatulistiwa Eritrea Eswatini Etiopia Gabon Gambia Ghana Guinea Guinea-Bissau Pantai Gading Kenya Lesotho Liberia Libya Madagaskar Malawi Mali Mauritania Mauritius Maroko Mozambik Namibia Niger Nigeria Rwanda Sao Tome dan Principe Senegal Seychelles Sierra Leone Somalia Somaliland Afrika Selatan ...

For the science-fiction novel by Christopher Priest, see Inverted World. Earth where its bodies of water and landmasses are swapped This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (March 2019) The topic of this article may not meet ...

 

Irish Fine Gael politician (b. 1977) Alan FarrellTDChair of the Committee on Children and Youth AffairsIn office8 July 2017 – 15 September 2020Preceded byJim DalySucceeded byKathleen FunchionTeachta DálaIncumbentAssumed office February 2016ConstituencyDublin FingalIn officeFebruary 2011 – February 2016ConstituencyDublin North Personal detailsBorn (1977-12-29) 29 December 1977 (age 45)Malahide, Dublin, IrelandPolitical partyFine GaelSpouse Emma Doyle ​...

 

Estrecho de Bellot Bellot Strait' Localización del estrecho de BellotUbicación geográficaContinente América del NorteOcéano Océano ÁrticoArchipiélago Archipiélago ártico canadienseIsla Isla SomersetCoordenadas 71°59′40″N 94°47′40″O / 71.99444444, -94.79444444Ubicación administrativaPaís Canadá CanadáDivisión  NunavutAccidentes geográficosOtros accidentes Península de BoothiaCuerpo de aguaMares próximos Golfo de Boothia y estrecho del Prín...

العلاقات الليتوانية النيكاراغوية ليتوانيا نيكاراغوا   ليتوانيا   نيكاراغوا تعديل مصدري - تعديل   العلاقات الليتوانية النيكاراغوية هي العلاقات الثنائية التي تجمع بين ليتوانيا ونيكاراغوا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجع...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Edmonds Woodway High School – news · newspapers · books · scholar · JSTOR (February 2018) (Learn how and when to remove this template message) Public secondary school in Edmonds, Washington , United StatesEdmonds-Woodway High SchoolFront entry of buildingAddres...

 

Cet article est une ébauche concernant le chemin de fer. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Consultez la liste des tâches à accomplir en page de discussion. Voiture « Saucisson » Voitures allégées État « Saucisson » Identification Surnom Saucisson Type voiture d'express Maître d’œuvre EIC Commande 1936 Construction 1936 à 1939 Nombre 55 Période de service 1938 à 1...

American musical group Not to be confused with Earth and Fire, a Dutch rock and pop group. For the elements, see Classical element. For the 2013 Cappadonna album, see Eyrth, Wynd and Fyre. Earth, Wind & FireEarth, Wind & Fire performing in 2009Background informationAlso known as EW&F EWF OriginChicago, Illinois, U.S.Genres R&B soul funk pop disco[1][2] progressive soul[3] Years active1969–presentLabels Warner Bros. ARC Columbia Kalimba Sanctuary Membe...

 

American soldier (1739–1809) Not to be confused with Philemon Dickerson. This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2010) (Learn how and when to remove this template message) Philemon DickinsonUnited States Senatorfrom New JerseyIn officeNovember 23, 1790 – March 3, 1793Preceded byWilliam PatersonSucceeded byFrederick Frelinghuysen Per...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!