Baire category theorem

The Baire category theorem (BCT) is an important result in general topology and functional analysis. The theorem has two forms, each of which gives sufficient conditions for a topological space to be a Baire space (a topological space such that the intersection of countably many dense open sets is still dense). It is used in the proof of results in many areas of analysis and geometry, including some of the fundamental theorems of functional analysis.

Versions of the Baire category theorem were first proved independently in 1897 by Osgood for the real line and in 1899 by Baire[1] for Euclidean space .[2] The more general statement for completely metrizable spaces was first shown by Hausdorff[3] in 1914.

Statement

A Baire space is a topological space in which every countable intersection of open dense sets is dense in See the corresponding article for a list of equivalent characterizations, as some are more useful than others depending on the application.

Neither of these statements directly implies the other, since there are complete metric spaces that are not locally compact (the irrational numbers with the metric defined below; also, any Banach space of infinite dimension), and there are locally compact Hausdorff spaces that are not metrizable (for instance, any uncountable product of non-trivial compact Hausdorff spaces; also, several function spaces used in functional analysis; the uncountable Fort space). See Steen and Seebach in the references below.

Relation to the axiom of choice

The proof of BCT1 for arbitrary complete metric spaces requires some form of the axiom of choice; and in fact BCT1 is equivalent over ZF to the axiom of dependent choice, a weak form of the axiom of choice.[10]

A restricted form of the Baire category theorem, in which the complete metric space is also assumed to be separable, is provable in ZF with no additional choice principles.[11] This restricted form applies in particular to the real line, the Baire space the Cantor space and a separable Hilbert space such as the -space .

Uses

BCT1 is used in functional analysis to prove the open mapping theorem, the closed graph theorem and the uniform boundedness principle.

BCT1 also shows that every nonempty complete metric space with no isolated point is uncountable. (If is a nonempty countable metric space with no isolated point, then each singleton in is nowhere dense, and is meagre in itself.) In particular, this proves that the set of all real numbers is uncountable.

BCT1 shows that each of the following is a Baire space:

  • The space of real numbers
  • The irrational numbers, with the metric defined by where is the first index for which the continued fraction expansions of and differ (this is a complete metric space)
  • The Cantor set

By BCT2, every finite-dimensional Hausdorff manifold is a Baire space, since it is locally compact and Hausdorff. This is so even for non-paracompact (hence nonmetrizable) manifolds such as the long line.

BCT is used to prove Hartogs's theorem, a fundamental result in the theory of several complex variables.

BCT1 is used to prove that a Banach space cannot have countably infinite dimension.

Proof

(BCT1) The following is a standard proof that a complete pseudometric space is a Baire space.[6]

Let be a countable collection of open dense subsets. We want to show that the intersection is dense. A subset is dense if and only if every nonempty open subset intersects it. Thus to show that the intersection is dense, it suffices to show that any nonempty open subset of has some point in common with all of the . Because is dense, intersects consequently, there exists a point and a number such that: where and denote an open and closed ball, respectively, centered at with radius Since each is dense, this construction can be continued recursively to find a pair of sequences and such that:

(This step relies on the axiom of choice and the fact that a finite intersection of open sets is open and hence an open ball can be found inside it centered at .) The sequence is Cauchy because whenever and hence converges to some limit by completeness. If is a positive integer then (because this set is closed). Thus and for all

There is an alternative proof using Choquet's game.[12]

(BCT2) The proof that a locally compact regular space is a Baire space is similar.[8] It uses the facts that (1) in such a space every point has a local base of closed compact neighborhoods; and (2) in a compact space any collection of closed sets with the finite intersection property has nonempty intersection. The result for locally compact Hausdorff spaces is a special case, as such spaces are regular.

Notes

  1. ^ Baire, R. (1899). "Sur les fonctions de variables réelles". Ann. Di Mat. 3: 1–123.
  2. ^ Bourbaki 1989, Historical Note, p. 272.
  3. ^ Engelking 1989, Historical and bibliographic notes to section 4.3, p. 277.
  4. ^ a b Kelley 1975, theorem 34, p. 200.
  5. ^ Narici & Beckenstein 2011, Theorem 11.7.2, p. 393.
  6. ^ a b Schechter 1996, Theorem 20.16, p. 537.
  7. ^ a b Willard 2004, Corollary 25.4.
  8. ^ a b Schechter 1996, Theorem 20.18, p. 538.
  9. ^ Narici & Beckenstein 2011, Theorem 11.7.3, p. 394.
  10. ^ Blair, Charles E. (1977). "The Baire category theorem implies the principle of dependent choices". Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys. 25 (10): 933–934.
  11. ^ Levy 2002, p. 212.
  12. ^ Baker, Matt (July 7, 2014). "Real Numbers and Infinite Games, Part II: The Choquet game and the Baire Category Theorem".

References

Read other articles:

Hepialidae Gold Swift (en) TaksonomiKerajaanAnimaliaFilumArthropodaKelasInsectaOrdoLepidopteraUpaordoGlossataInfraordoExoporiaSuperfamiliHepialoideaFamiliHepialidae Stephens, 1829 lbs Hepialidae adalah famili dari ordo Lepidoptera yang terdiri atas 496 spesies. Spesies dari famili ini kebanyakan berada di daerah Australia, selatan Afrika, dan negara Chili. Serangga dewasa berukuran 2–25 cm (termasuk sayap), dengan permukaan kepala kasar, dan tidak ada mandibula yang jelas. Umumnya serangga ...

 

ساوث إنغليش     الإحداثيات 41°27′08″N 92°05′23″W / 41.452222222222°N 92.089722222222°W / 41.452222222222; -92.089722222222  تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة كيوكوك  خصائص جغرافية  المساحة 0.776438 كيلومتر مربع (1 أبريل 2010)  ارتفاع 256 متر  عدد السكا...

 

Este artículo o sección necesita referencias que aparezcan en una publicación acreditada.Este aviso fue puesto el 24 de enero de 2021. Ambiciones Serie de televisiónGuion por Gustavo Belatti Mario SegadeDirigido por Miguel ColomProtagonistas Susú PecoraroCeleste CidJoaquín FurrielCarlos BellosoFernán MirásAmbientación 2005País de origen ArgentinaN.º de episodios 12Empresa(s) productora(s) Telefe ContenidosDistribuidor Telefe InternacionalLanzamientoMedio de difusión TelefeHorario Mi

سفارة السويد في قبرص السويد قبرص الإحداثيات 34°59′48″N 33°27′41″E / 34.996632°N 33.461265°E / 34.996632; 33.461265 البلد قبرص  المكان نيقوسيا  الموقع الالكتروني الموقع الرسمي  تعديل مصدري - تعديل   سفارة السويد في قبرص هي أرفع تمثيل دبلوماسي[1] لدولة السويد لدى قبرص.[2]...

 

Esta página cita fontes, mas que não cobrem todo o conteúdo. Ajude a inserir referências. Conteúdo não verificável pode ser removido.—Encontre fontes: ABW  • CAPES  • Google (N • L • A) (Agosto de 2014) Brasão de armas da Índia, no qual há uma réplica do Capitel do Leão de Asoca. Capitel do Leão de Açoca[1] ou Asoca,[2] (em hindi: അശോകസ്തംഭം) é uma escultura de quatro leões indianos. Foi origin...

 

Amman عمّان ʿAmmānKotaJulukan: Kota Tujuh Bukit, Filadelfia (Yunani), Amon, Rabbah (Ammon)Negara YordaniaKegubernuranKegubernuran Ibu kotaDidirikan7000 S.M.Munisipalitas1909Pemerintahan • Wali kotaOmar MaaniLuas • Total1.680 km2 (650 sq mi) • Luas daratan700 km2 (300 sq mi)Ketinggian777m−1.400 m (2,564 ft)Populasi (2005)[1] • Total1,919,000Situs webhttp://www.ammancity.gov.j...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أبريل 2018) ناتالي روزينجاتج معلومات شخصية الميلاد أكتوبر 1975 (48 سنة)  لوكسمبورغ الجنسية الحياة العملية المدرسة الأم مدرسة الجمعية المعمارية للهندسة المعمارية  [ل

 

Division 1 FéminineNegara PrancisKonfederasiUEFADibentuk1974Divisi1Jumlah tim12Tingkat pada piramida1Degradasi keDivisi 2 FémininePiala domestikCoupe de France féminineTrophée des ChampionnesPiala internasionalLiga Champions UEFAJuara bertahan ligaLyon (gelar ke-16) (2022–2023)Klub tersuksesLyon (16 gelar)Televisi penyiarCanal+ (Prancis)ATA Football (Global)Situs webSitus resmi Division 1 Féminine 2022–2023 Divisi 1 Féminine (bahasa Inggris: Division 1 Féminine; Prancis...

 

João Gonçalves Pereira João Pedro Guimarães Gonçalves Pereira (Lisboa, Freguesia de São Cristóvão e São Lourenço, 7 de maio de 1977) é um político português, membro da Comissão Política Nacional do CDS-PP e vereador (sem pelouro) na Câmara Municipal de Lisboa e foi deputado à Assembleia da República, assumindo o cargo depois da renúncia de Assunção Cristas até abril de 2021, altura em que renunciou ao mandato.[1] Biografia Educação Após ter concluído a sua licenciatu...

Song by Ilene Woods and Mike Douglas in the 1950 animated film CinderellaSo This Is LoveSong by Ilene Woods and Mike Douglas in the 1950 animated film CinderellaPublished1948GenreSoundtrackSongwriter(s)Mack DavidAl HoffmanJerry Livingston So This Is Love is a 1948 song composed by Al Hoffman, Mack David, and Jerry Livingston. It was written for Walt Disney's Cinderella, in which it was performed by Ilene Woods and Mike Douglas.[1] It is sung by the characters of Cinderella and Prince ...

 

Para otros usos de este término, véase Exaltación de la Santa Cruz. Exaltación de la Cruz Partido BanderaEscudo Coordenadas 34°17′39″S 59°05′57″O / -34.294144444444, -59.099266666667Cabecera Capilla del Señor • Población 8044[1]​Entidad Partido • País  Argentina • Provincia  Buenos AiresIntendente Diego Nanni (FdT)FundaciónCreación 25 de octubre de 1864 • Fundación  (Ley Provincial 422)Superficie Puesto 100....

 

Herb powiatu ropczycko-sędziszowskiego Wygląd herbu powiatu ropczycko-sędziszowskiego określa uchwała Nr II/8/2002 Rady Powiatu Ropczycko-Sędziszowskiego z dnia 5 grudnia 2002 roku w sprawie zmian w Statucie Powiatu Ropczycko-Sędziszowskiego: Na tarczy dwudzielnej w słup w polu lewym błękitnym majuskuła R złota pod takąż koroną, w polu prawym czerwonym rogacina srebrna w słup u dołu rozdarta w wąs. Symbolika herbu Uzasadnienie wyglądu herbu z załącznika Nr 3 do Statutu Po...

  لمعانٍ أخرى، طالع فويل (توضيح). فويلالبلد  المملكة المتحدة المنطقة أيرلندا الشمالية المساحة 184٫012 كم²[1] الدائرة الانتخابيةتأسست في 9 يونيو 1983 عدد المقاعد 1 مجلس العموم تعديل - تعديل مصدري - تعديل ويكي بيانات 55°01′34″N 7°23′46″W / 55.026°N 7.396°W / 55.026; -7.396 فوي...

 

Italian race walker Elisa RigaudoPersonal informationBorn (1980-06-17) 17 June 1980 (age 43)Cuneo, ItalyHeight1.68 m (5 ft 6 in)Weight55 kg (121 lb)SportCountry ItalySportAthleticsEvent20 km walkClubG.S. Fiamme GialleAchievements and titlesPersonal best 20 km: 1:27:12 (2008) Medal record Event 1st 2nd 3rd Olympic Games 0 0 1 World Championships 0 1 1 European Championships 0 0 1 Mediterranean Games 1 0 0 World Race Walking Team C'ships 0 1 0 European Race Walking...

 

Battle of Musgrove MillPart of the American Revolutionary WarView towards the ridge line where Patriot militia defeated attacking Loyalist regulars and militia.DateAugust 18, 1780LocationLaurens County, near Cross Anchor, South Carolina34°35′36.76″N 81°51′8.92″W / 34.5935444°N 81.8524778°W / 34.5935444; -81.8524778Result Patriot victoryBelligerents Loyalist militia Patriot militiaCommanders and leaders Alexander Innes Abraham DePeyster Daniel Clary Isaac Sh...

Railway carriage with sleeping compartments This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Couchette car – news · newspapers · books · scholar · JSTOR (June 2008) (Learn how and when to remove this template message) A couchette car is a railway carriage conveying non or semi-private sleeping accommodation. ...

 

Japanese film director Kazuo Mori森 一生Mori (center) on the set for Tōjūrō no koi (1955)BornJanuary 15, 1911Matsuyama, Ehime, JapanDiedJune 29, 1989 (aged 78)OccupationFilm directorYears active1936–1970 Kazuo Mori (森 一生, Mori Kazuo, January 15, 1911 – June 29, 1989[1]), also known by his street name Issei Mori (もり いっせい, Mori Issei), was a Japanese film director who primarily worked in popular genres like the jidaigeki. Mori directed over 100 films in ...

 

Katedral TrebinjeKatedral Kelahiran Bunda MariaKatedral TrebinjeLokasiTrebinjeNegara Bosnia dan HerzegovinaDenominasiGereja Katolik RomaSitus webžupe Rođenja Blažene Djevice Marije Katedrala-TrebinjeArsitekturStatusKatedralAdministrasiKeuskupanKeuskupan Trebinje-MrkanKlerusUskup AgungYang Mulia Mgr. Tomo VukšićUskupYang Mulia Mgr. Petar Palić Katedral Kelahiran Maria atau Katedral Trebinje (bahasa Serbo-Kroasia: Katedrala Male Gospe) adalah sebuah gereja katedral Katolik yang t...

Domenico Fontana Fontana al Milan nella stagione 1969-1970 Nazionalità  Italia Altezza 175 cm Peso 68 kg Calcio Ruolo Centrocampista Termine carriera 1976 Carriera Giovanili 19??-19?? Juventina Marano Squadre di club1 1962-1963 Schio? (?)1963-1969 L.R. Vicenza98 (7)1969-1970 Milan6 (0)1970-1972 L.R. Vicenza54 (4)1972-1973 Napoli9 (1)1973-1975 L.R. Vicenza19 (1)1975-1976 Ravenna? (?) 1 I due numeri indicano le presenze e le reti segnate, per le sole par...

 

Pour les articles homonymes, voir Quinze-Janvier. Éphémérides Janvier 1er 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31         15 décembre 15 février Chronologies thématiques Croisades Ferroviaires Sports Disney Anarchisme Catholicisme Abréviations / Voir aussi (° 1852) = né en 1852 († 1885) = mort en 1885 a.s. = calendrier julien n.s. = calendrier grégorien Calendrier Calendrier perpétuel Liste de calendriers Naissances du...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!