Concept in probability and statistics
In probability theory and statistics , given a stochastic process , the autocovariance is a function that gives the covariance of the process with itself at pairs of time points. Autocovariance is closely related to the autocorrelation of the process in question.
Auto-covariance of stochastic processes
Definition
With the usual notation
E
{\displaystyle \operatorname {E} }
for the expectation operator, if the stochastic process
{
X
t
}
{\displaystyle \left\{X_{t}\right\}}
has the mean function
μ μ -->
t
=
E
-->
[
X
t
]
{\displaystyle \mu _{t}=\operatorname {E} [X_{t}]}
, then the autocovariance is given by[ 1] : p. 162
K
X
X
-->
(
t
1
,
t
2
)
=
cov
-->
[
X
t
1
,
X
t
2
]
=
E
-->
[
(
X
t
1
− − -->
μ μ -->
t
1
)
(
X
t
2
− − -->
μ μ -->
t
2
)
]
=
E
-->
[
X
t
1
X
t
2
]
− − -->
μ μ -->
t
1
μ μ -->
t
2
{\displaystyle \operatorname {K} _{XX}(t_{1},t_{2})=\operatorname {cov} \left[X_{t_{1}},X_{t_{2}}\right]=\operatorname {E} [(X_{t_{1}}-\mu _{t_{1}})(X_{t_{2}}-\mu _{t_{2}})]=\operatorname {E} [X_{t_{1}}X_{t_{2}}]-\mu _{t_{1}}\mu _{t_{2}}}
Eq.1
where
t
1
{\displaystyle t_{1}}
and
t
2
{\displaystyle t_{2}}
are two instances in time.
Definition for weakly stationary process
If
{
X
t
}
{\displaystyle \left\{X_{t}\right\}}
is a weakly stationary (WSS) process , then the following are true:[ 1] : p. 163
μ μ -->
t
1
=
μ μ -->
t
2
≜ ≜ -->
μ μ -->
{\displaystyle \mu _{t_{1}}=\mu _{t_{2}}\triangleq \mu }
for all
t
1
,
t
2
{\displaystyle t_{1},t_{2}}
and
E
-->
[
|
X
t
|
2
]
<
∞ ∞ -->
{\displaystyle \operatorname {E} [|X_{t}|^{2}]<\infty }
for all
t
{\displaystyle t}
and
K
X
X
-->
(
t
1
,
t
2
)
=
K
X
X
-->
(
t
2
− − -->
t
1
,
0
)
≜ ≜ -->
K
X
X
-->
(
t
2
− − -->
t
1
)
=
K
X
X
-->
(
τ τ -->
)
,
{\displaystyle \operatorname {K} _{XX}(t_{1},t_{2})=\operatorname {K} _{XX}(t_{2}-t_{1},0)\triangleq \operatorname {K} _{XX}(t_{2}-t_{1})=\operatorname {K} _{XX}(\tau ),}
where
τ τ -->
=
t
2
− − -->
t
1
{\displaystyle \tau =t_{2}-t_{1}}
is the lag time, or the amount of time by which the signal has been shifted.
The autocovariance function of a WSS process is therefore given by:[ 2] : p. 517
K
X
X
-->
(
τ τ -->
)
=
E
-->
[
(
X
t
− − -->
μ μ -->
t
)
(
X
t
− − -->
τ τ -->
− − -->
μ μ -->
t
− − -->
τ τ -->
)
]
=
E
-->
[
X
t
X
t
− − -->
τ τ -->
]
− − -->
μ μ -->
t
μ μ -->
t
− − -->
τ τ -->
{\displaystyle \operatorname {K} _{XX}(\tau )=\operatorname {E} [(X_{t}-\mu _{t})(X_{t-\tau }-\mu _{t-\tau })]=\operatorname {E} [X_{t}X_{t-\tau }]-\mu _{t}\mu _{t-\tau }}
Eq.2
which is equivalent to
K
X
X
-->
(
τ τ -->
)
=
E
-->
[
(
X
t
+
τ τ -->
− − -->
μ μ -->
t
+
τ τ -->
)
(
X
t
− − -->
μ μ -->
t
)
]
=
E
-->
[
X
t
+
τ τ -->
X
t
]
− − -->
μ μ -->
2
{\displaystyle \operatorname {K} _{XX}(\tau )=\operatorname {E} [(X_{t+\tau }-\mu _{t+\tau })(X_{t}-\mu _{t})]=\operatorname {E} [X_{t+\tau }X_{t}]-\mu ^{2}}
.
Normalization
It is common practice in some disciplines (e.g. statistics and time series analysis ) to normalize the autocovariance function to get a time-dependent Pearson correlation coefficient . However in other disciplines (e.g. engineering) the normalization is usually dropped and the terms "autocorrelation" and "autocovariance" are used interchangeably.
The definition of the normalized auto-correlation of a stochastic process is
ρ ρ -->
X
X
(
t
1
,
t
2
)
=
K
X
X
-->
(
t
1
,
t
2
)
σ σ -->
t
1
σ σ -->
t
2
=
E
-->
[
(
X
t
1
− − -->
μ μ -->
t
1
)
(
X
t
2
− − -->
μ μ -->
t
2
)
]
σ σ -->
t
1
σ σ -->
t
2
{\displaystyle \rho _{XX}(t_{1},t_{2})={\frac {\operatorname {K} _{XX}(t_{1},t_{2})}{\sigma _{t_{1}}\sigma _{t_{2}}}}={\frac {\operatorname {E} [(X_{t_{1}}-\mu _{t_{1}})(X_{t_{2}}-\mu _{t_{2}})]}{\sigma _{t_{1}}\sigma _{t_{2}}}}}
.
If the function
ρ ρ -->
X
X
{\displaystyle \rho _{XX}}
is well-defined, its value must lie in the range
[
− − -->
1
,
1
]
{\displaystyle [-1,1]}
, with 1 indicating perfect correlation and −1 indicating perfect anti-correlation .
For a WSS process, the definition is
ρ ρ -->
X
X
(
τ τ -->
)
=
K
X
X
-->
(
τ τ -->
)
σ σ -->
2
=
E
-->
[
(
X
t
− − -->
μ μ -->
)
(
X
t
+
τ τ -->
− − -->
μ μ -->
)
]
σ σ -->
2
{\displaystyle \rho _{XX}(\tau )={\frac {\operatorname {K} _{XX}(\tau )}{\sigma ^{2}}}={\frac {\operatorname {E} [(X_{t}-\mu )(X_{t+\tau }-\mu )]}{\sigma ^{2}}}}
.
where
K
X
X
-->
(
0
)
=
σ σ -->
2
{\displaystyle \operatorname {K} _{XX}(0)=\sigma ^{2}}
.
Properties
Symmetry property
K
X
X
-->
(
t
1
,
t
2
)
=
K
X
X
-->
(
t
2
,
t
1
)
¯ ¯ -->
{\displaystyle \operatorname {K} _{XX}(t_{1},t_{2})={\overline {\operatorname {K} _{XX}(t_{2},t_{1})}}}
[ 3] : p.169
respectively for a WSS process:
K
X
X
-->
(
τ τ -->
)
=
K
X
X
-->
(
− − -->
τ τ -->
)
¯ ¯ -->
{\displaystyle \operatorname {K} _{XX}(\tau )={\overline {\operatorname {K} _{XX}(-\tau )}}}
[ 3] : p.173
Linear filtering
The autocovariance of a linearly filtered process
{
Y
t
}
{\displaystyle \left\{Y_{t}\right\}}
Y
t
=
∑ ∑ -->
k
=
− − -->
∞ ∞ -->
∞ ∞ -->
a
k
X
t
+
k
{\displaystyle Y_{t}=\sum _{k=-\infty }^{\infty }a_{k}X_{t+k}\,}
is
K
Y
Y
(
τ τ -->
)
=
∑ ∑ -->
k
,
l
=
− − -->
∞ ∞ -->
∞ ∞ -->
a
k
a
l
K
X
X
(
τ τ -->
+
k
− − -->
l
)
.
{\displaystyle K_{YY}(\tau )=\sum _{k,l=-\infty }^{\infty }a_{k}a_{l}K_{XX}(\tau +k-l).\,}
Calculating turbulent diffusivity
Autocovariance can be used to calculate turbulent diffusivity .[ 4] Turbulence in a flow can cause the fluctuation of velocity in space and time. Thus, we are able to identify turbulence through the statistics of those fluctuations[citation needed ] .
Reynolds decomposition is used to define the velocity fluctuations
u
′
(
x
,
t
)
{\displaystyle u'(x,t)}
(assume we are now working with 1D problem and
U
(
x
,
t
)
{\displaystyle U(x,t)}
is the velocity along
x
{\displaystyle x}
direction):
U
(
x
,
t
)
=
⟨ ⟨ -->
U
(
x
,
t
)
⟩ ⟩ -->
+
u
′
(
x
,
t
)
,
{\displaystyle U(x,t)=\langle U(x,t)\rangle +u'(x,t),}
where
U
(
x
,
t
)
{\displaystyle U(x,t)}
is the true velocity, and
⟨ ⟨ -->
U
(
x
,
t
)
⟩ ⟩ -->
{\displaystyle \langle U(x,t)\rangle }
is the expected value of velocity . If we choose a correct
⟨ ⟨ -->
U
(
x
,
t
)
⟩ ⟩ -->
{\displaystyle \langle U(x,t)\rangle }
, all of the stochastic components of the turbulent velocity will be included in
u
′
(
x
,
t
)
{\displaystyle u'(x,t)}
. To determine
⟨ ⟨ -->
U
(
x
,
t
)
⟩ ⟩ -->
{\displaystyle \langle U(x,t)\rangle }
, a set of velocity measurements that are assembled from points in space, moments in time or repeated experiments is required.
If we assume the turbulent flux
⟨ ⟨ -->
u
′
c
′
⟩ ⟩ -->
{\displaystyle \langle u'c'\rangle }
(
c
′
=
c
− − -->
⟨ ⟨ -->
c
⟩ ⟩ -->
{\displaystyle c'=c-\langle c\rangle }
, and c is the concentration term) can be caused by a random walk, we can use Fick's laws of diffusion to express the turbulent flux term:
J
turbulence
x
=
⟨ ⟨ -->
u
′
c
′
⟩ ⟩ -->
≈ ≈ -->
D
T
x
∂ ∂ -->
⟨ ⟨ -->
c
⟩ ⟩ -->
∂ ∂ -->
x
.
{\displaystyle J_{{\text{turbulence}}_{x}}=\langle u'c'\rangle \approx D_{T_{x}}{\frac {\partial \langle c\rangle }{\partial x}}.}
The velocity autocovariance is defined as
K
X
X
≡ ≡ -->
⟨ ⟨ -->
u
′
(
t
0
)
u
′
(
t
0
+
τ τ -->
)
⟩ ⟩ -->
{\displaystyle K_{XX}\equiv \langle u'(t_{0})u'(t_{0}+\tau )\rangle }
or
K
X
X
≡ ≡ -->
⟨ ⟨ -->
u
′
(
x
0
)
u
′
(
x
0
+
r
)
⟩ ⟩ -->
,
{\displaystyle K_{XX}\equiv \langle u'(x_{0})u'(x_{0}+r)\rangle ,}
where
τ τ -->
{\displaystyle \tau }
is the lag time, and
r
{\displaystyle r}
is the lag distance.
The turbulent diffusivity
D
T
x
{\displaystyle D_{T_{x}}}
can be calculated using the following 3 methods:
If we have velocity data along a Lagrangian trajectory :
D
T
x
=
∫ ∫ -->
τ τ -->
∞ ∞ -->
u
′
(
t
0
)
u
′
(
t
0
+
τ τ -->
)
d
τ τ -->
.
{\displaystyle D_{T_{x}}=\int _{\tau }^{\infty }u'(t_{0})u'(t_{0}+\tau )\,d\tau .}
If we have velocity data at one fixed (Eulerian ) location[citation needed ] :
D
T
x
≈ ≈ -->
[
0.3
± ± -->
0.1
]
[
⟨ ⟨ -->
u
′
u
′
⟩ ⟩ -->
+
⟨ ⟨ -->
u
⟩ ⟩ -->
2
⟨ ⟨ -->
u
′
u
′
⟩ ⟩ -->
]
∫ ∫ -->
τ τ -->
∞ ∞ -->
u
′
(
t
0
)
u
′
(
t
0
+
τ τ -->
)
d
τ τ -->
.
{\displaystyle D_{T_{x}}\approx [0.3\pm 0.1]\left[{\frac {\langle u'u'\rangle +\langle u\rangle ^{2}}{\langle u'u'\rangle }}\right]\int _{\tau }^{\infty }u'(t_{0})u'(t_{0}+\tau )\,d\tau .}
If we have velocity information at two fixed (Eulerian) locations[citation needed ] :
D
T
x
≈ ≈ -->
[
0.4
± ± -->
0.1
]
[
1
⟨ ⟨ -->
u
′
u
′
⟩ ⟩ -->
]
∫ ∫ -->
r
∞ ∞ -->
u
′
(
x
0
)
u
′
(
x
0
+
r
)
d
r
,
{\displaystyle D_{T_{x}}\approx [0.4\pm 0.1]\left[{\frac {1}{\langle u'u'\rangle }}\right]\int _{r}^{\infty }u'(x_{0})u'(x_{0}+r)\,dr,}
where
r
{\displaystyle r}
is the distance separated by these two fixed locations.
Auto-covariance of random vectors
See also
References
Further reading