Arnoldi iteration

In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.

The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called direct methods which must complete to give any useful results (see for example, Householder transformation). The partial result in this case being the first few vectors of the basis the algorithm is building.

When applied to Hermitian matrices it reduces to the Lanczos algorithm. The Arnoldi iteration was invented by W. E. Arnoldi in 1951.[1]

Krylov subspaces and the power iteration

An intuitive method for finding the largest (in absolute value) eigenvalue of a given m × m matrix is the power iteration: starting with an arbitrary initial vector b, calculate Ab, A2b, A3b, ... normalizing the result after every application of the matrix A.

This sequence converges to the eigenvector corresponding to the eigenvalue with the largest absolute value, . However, much potentially useful computation is wasted by using only the final result, . This suggests that instead, we form the so-called Krylov matrix:

The columns of this matrix are not in general orthogonal, but we can extract an orthogonal basis, via a method such as Gram–Schmidt orthogonalization. The resulting set of vectors is thus an orthogonal basis of the Krylov subspace, . We may expect the vectors of this basis to span good approximations of the eigenvectors corresponding to the largest eigenvalues, for the same reason that approximates the dominant eigenvector.

The Arnoldi iteration

The Arnoldi iteration uses the modified Gram–Schmidt process to produce a sequence of orthonormal vectors, q1, q2, q3, ..., called the Arnoldi vectors, such that for every n, the vectors q1, ..., qn span the Krylov subspace . Explicitly, the algorithm is as follows:

Start with an arbitrary vector q1 with norm 1.
Repeat for k = 2, 3, ...
  qk := A qk−1
  for j from 1 to k − 1
    hj,k−1 :=  qj* qk
    qk := qk − hj,k−1 qj
  hk,k−1 := ‖qkqk := qk / hk,k−1

The j-loop projects out the component of in the directions of . This ensures the orthogonality of all the generated vectors.

The algorithm breaks down when qk is the zero vector. This happens when the minimal polynomial of A is of degree k. In most applications of the Arnoldi iteration, including the eigenvalue algorithm below and GMRES, the algorithm has converged at this point.

Every step of the k-loop takes one matrix-vector product and approximately 4mk floating point operations.

In the programming language Python with support of the NumPy library:

import numpy as np

def arnoldi_iteration(A, b, n: int):
    """Compute a basis of the (n + 1)-Krylov subspace of the matrix A.

    This is the space spanned by the vectors {b, Ab, ..., A^n b}.

    Parameters
    ----------
    A : array_like
        An m × m array.
    b : array_like
        Initial vector (length m).
    n : int
        One less than the dimension of the Krylov subspace, or equivalently the *degree* of the Krylov space. Must be >= 1.
    
    Returns
    -------
    Q : numpy.array
        An m x (n + 1) array, where the columns are an orthonormal basis of the Krylov subspace.
    h : numpy.array
        An (n + 1) x n array. A on basis Q. It is upper Hessenberg.
    """
    eps = 1e-12
    h = np.zeros((n + 1, n))
    Q = np.zeros((A.shape[0], n + 1))
    # Normalize the input vector
    Q[:, 0] = b / np.linalg.norm(b, 2)  # Use it as the first Krylov vector
    for k in range(1, n + 1):
        v = np.dot(A, Q[:, k - 1])  # Generate a new candidate vector
        for j in range(k):  # Subtract the projections on previous vectors
            h[j, k - 1] = np.dot(Q[:, j].conj(), v)
            v = v - h[j, k - 1] * Q[:, j]
        h[k, k - 1] = np.linalg.norm(v, 2)
        if h[k, k - 1] > eps:  # Add the produced vector to the list, unless
            Q[:, k] = v / h[k, k - 1]
        else:  # If that happens, stop iterating.
            return Q, h
    return Q, h

Properties of the Arnoldi iteration

Let Qn denote the m-by-n matrix formed by the first n Arnoldi vectors q1, q2, ..., qn, and let Hn be the (upper Hessenberg) matrix formed by the numbers hj,k computed by the algorithm:

The orthogonalization method has to be specifically chosen such that the lower Arnoldi/Krylov components are removed from higher Krylov vectors. As can be expressed in terms of q1, ..., qi+1 by construction, they are orthogonal to qi+2, ..., qn,

We then have

The matrix Hn can be viewed as A in the subspace with the Arnoldi vectors as an orthogonal basis; A is orthogonally projected onto . The matrix Hn can be characterized by the following optimality condition. The characteristic polynomial of Hn minimizes ||p(A)q1||2 among all monic polynomials of degree n. This optimality problem has a unique solution if and only if the Arnoldi iteration does not break down.

The relation between the Q matrices in subsequent iterations is given by

where

is an (n+1)-by-n matrix formed by adding an extra row to Hn.

Finding eigenvalues with the Arnoldi iteration

The idea of the Arnoldi iteration as an eigenvalue algorithm is to compute the eigenvalues in the Krylov subspace. The eigenvalues of Hn are called the Ritz eigenvalues. Since Hn is a Hessenberg matrix of modest size, its eigenvalues can be computed efficiently, for instance with the QR algorithm, or somewhat related, Francis' algorithm. Also Francis' algorithm itself can be considered to be related to power iterations, operating on nested Krylov subspace. In fact, the most basic form of Francis' algorithm appears to be to choose b to be equal to Ae1, and extending n to the full dimension of A. Improved versions include one or more shifts, and higher powers of A may be applied in a single steps.[2]

This is an example of the Rayleigh-Ritz method.

It is often observed in practice that some of the Ritz eigenvalues converge to eigenvalues of A. Since Hn is n-by-n, it has at most n eigenvalues, and not all eigenvalues of A can be approximated. Typically, the Ritz eigenvalues converge to the largest eigenvalues of A. To get the smallest eigenvalues of A, the inverse (operation) of A should be used instead. This can be related to the characterization of Hn as the matrix whose characteristic polynomial minimizes ||p(A)q1|| in the following way. A good way to get p(A) small is to choose the polynomial p such that p(x) is small whenever x is an eigenvalue of A. Hence, the zeros of p (and thus the Ritz eigenvalues) will be close to the eigenvalues of A.

However, the details are not fully understood yet. This is in contrast to the case where A is Hermitian. In that situation, the Arnoldi iteration becomes the Lanczos iteration, for which the theory is more complete.

Arnoldi iteration demonstrating convergence of Ritz values (red) to the eigenvalues (black) of a 400x400 matrix, composed of uniform random values on the domain [-0.5 +0.5]

Restarted Arnoldi iteration

Due to practical storage consideration, common implementations of Arnoldi methods typically restart after a fixed number of iterations. One approach is the Implicitly Restarted Arnoldi Method (IRAM)[3] by Lehoucq and Sorensen, which was popularized in the free and open source software package ARPACK.[4] Another approach is the Krylov-Schur Algorithm by G. W. Stewart, which is more stable and simpler to implement than IRAM.[5]

See also

The generalized minimal residual method (GMRES) is a method for solving Ax = b based on Arnoldi iteration.

References

  1. ^ Arnoldi, W. E. (1951). "The principle of minimized iterations in the solution of the matrix eigenvalue problem". Quarterly of Applied Mathematics. 9 (1): 17–29. doi:10.1090/qam/42792. ISSN 0033-569X.
  2. ^ David S. Watkins. Francis' Algorithm Washington State University. Retrieved 14 December 2022
  3. ^ R. B. Lehoucq & D. C. Sorensen (1996). "Deflation Techniques for an Implicitly Restarted Arnoldi Iteration". SIAM Journal on Matrix Analysis and Applications. 17 (4): 789–821. doi:10.1137/S0895479895281484. hdl:1911/101832.
  4. ^ R. B. Lehoucq; D. C. Sorensen & C. Yang (1998). "ARPACK Users Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods". SIAM. Archived from the original on 2007-06-26. Retrieved 2007-06-30.
  5. ^ Stewart, G. W. (2002). "A Krylov--Schur Algorithm for Large Eigenproblems". SIAM Journal on Matrix Analysis and Applications. 23 (3): 601–614. doi:10.1137/S0895479800371529. ISSN 0895-4798.
  • W. E. Arnoldi, "The principle of minimized iterations in the solution of the matrix eigenvalue problem," Quarterly of Applied Mathematics, volume 9, pages 17–29, 1951.
  • Yousef Saad, Numerical Methods for Large Eigenvalue Problems, Manchester University Press, 1992. ISBN 0-7190-3386-1.
  • Lloyd N. Trefethen and David Bau, III, Numerical Linear Algebra, Society for Industrial and Applied Mathematics, 1997. ISBN 0-89871-361-7.
  • Jaschke, Leonhard: Preconditioned Arnoldi Methods for Systems of Nonlinear Equations. (2004). ISBN 2-84976-001-3
  • Implementation: Matlab comes with ARPACK built-in. Both stored and implicit matrices can be analyzed through the eigs() function.

Read other articles:

Italia Uniformi di gara Prima tenuta Tenuta alternativa Sport Rugby a 15 Federazione Federazione Italiana Rugby Soprannome «Azzurri» C.T. Kieran Crowley Record presenze Sergio Parisse (141) Record mete Marcello Cuttitta (25) Record punti Diego Domínguez (971) Piazzamento 12ª (21 novembre 2022) Sponsor tecnico Macron Esordio internazionale Spagna 9-0 ItaliaBarcellona, 20 maggio 1929 Migliore vittoria Italia 104-8 Rep. CecaViadana, 18 maggio 1994 Peggiore sconfitta Sudafrica 101-0 ItaliaDur...

 

Jeff Hadler (1968 - 2017) adalah seorang Indonesianis terkemuka yang terakhir mengajar di UC Berkeley, di Berkeley, California, AS. Jeff Hadler meninggal dunia pada 11 Januari 2017 setelah berjuang melawan kanker. Hadler terkenal karena penelitiannya tentang matriarki di kalangan masyarakat Minangkabau di Indonesia. Jeff Hadler Latar belakang Jeff Hadler dilahirkan dengan nama Jeffrey Allen Hadler, di Boston, Massachussetts dan dibesarkan di Chapel Hill, North Carolina. Ia lulus dari SMA Chap...

 

Julie Frost (2019) Julie Frost (* 1970) ist eine US-amerikanische Songwriterin, Sängerin und Musikproduzentin. Sie lebt in Los Angeles. Julie Frost wuchs in einer ländlichen Gegend im US-Bundesstaat Vermont auf und begann 1992 in Chicago öffentlich aufzutreten. Ihr erstes Solo-Album My Wave (2002) brachte ihr einen Achtungserfolg bei mehreren Kritikern ein; ihr Gesangsstil wurde mehrfach mit dem von Jewel verglichen.[1][2] Später gründete sie ein eigenes Musikstudio „Ha...

У Вікіпедії є статті про інші географічні об’єкти з назвою Плімут. Місто Плімутангл. Plymouth Координати 43°31′54″ пн. ш. 72°43′18″ зх. д. / 43.53166666669477536° пн. ш. 72.72166666669478730° зх. д. / 43.53166666669477536; -72.72166666669478730Координати: 43°31′54″ пн. ш. 72°43′18″ зх.&#...

 

The Military ranks of Somaliland are the military insignia used by the Somaliland Armed Forces, whose rank insignia combine those used by United Kingdom, which maintained colonial possessions in this country. Rank insignia follow thus the British pattern, but has four warrant officer ranks following the US model. The highest rank is lieutenant general, currently there has been no promotion to the rank of lieutenant general rank.[1][2] Somaliland does not have an air force. Feb...

 

Simon Eck (Peter Weinher, 1574) Simon Thaddäus Eck (* um 1514 in Egg an der Günz; † 1. Februar 1574 in München) war bayerischer Hofkanzler und kaiserlicher Rat. Er war ein Cousin von Johannes Eck. Auf die bayerische Adelsverschwörung übte er großen Einfluss aus. Biographie Simon war der Sohn Michael Maiers. Dessen Bruder Martin Maier war der Vater von Johannes Eck. Letzterer bewirkte, dass Simon Eck nach Ingolstadt ging, wo er 1530 den Magister der Artistenfakultät absolvierte und 15...

Bioscoopjournaal uit 1976. In Vlissingen werd herdacht dat admiraal Michiel de Ruyter driehonderd jaar eerder overleden is. Tijdens de herdenking werd onder meer een internationale botenparade gehouden. In 2007 werd in Nederland het Michiel de Ruyterjaar gehouden. Hier wordt gevierd dat Michiel Adriaenszoon de Ruyter 400 jaar geleden werd geboren in Vlissingen. Michiel de Ruyter leefde van 24 maart 1607 – 29 april 1676 en was een Nederlands admiraal. Hoofdactiviteiten 2007 Opening Michiel d...

 

Slovenian cross-country skier Petra MajdičPetra Majdic competing in 2009Full namePetra MajdičBorn (1979-12-22) 22 December 1979 (age 43)Ljubljana, SR Slovenia, SFR YugoslaviaHeight1.78 m (5 ft 10 in)Ski clubŠD Atrans TrojaneWorld Cup careerSeasons13 – (1999–2011)Individual wins24Team wins0Indiv. podiums49Team podiums0Indiv. starts222Team starts18Overall titles0 – (2nd in 2009)Discipline titles3 – (3 SP) Medal rec...

 

Взаємне розташування галактик Місцевої групи Моделювання процесу NASA. Зіткнення галактик Чумацький Шлях і Туманність Андромеди — передбачуване зіткнення двох найбільших галактик Місцевої групи: Чумацького Шляху і галактики Андромеди (M31), яке трапиться приблизно че...

This article uses bare URLs, which are uninformative and vulnerable to link rot. Please consider converting them to full citations to ensure the article remains verifiable and maintains a consistent citation style. Several templates and tools are available to assist in formatting, such as reFill (documentation) and Citation bot (documentation). (August 2022) (Learn how and when to remove this template message) Karin MarkidesKarin Markides (2013)Scientific careerFieldsAnalytical ChemistryInsti...

 

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Porthcawl – news · newspapers · books · scholar · JSTOR (January 2009) (Learn how and when to remove this template message) Human settlement in WalesPorthcawlGrand Pavilion, PorthcawlPorthcawlLocation within BridgendPopulation16,005 (2011)[1]OS...

 

2007 single by Flex Te QuieroSingle by Flexfrom the album Te Quiero: Romantic Style in da World ReleasedSeptember 28, 2007GenreReggaetonLength3:17LabelEMI LatinSongwriter(s)Félix Danilo GómezProducer(s)Elian DavisPredikadorFlex singles chronology Te Quiero (2007) Escápate (2007) Te Quiero (English: I Love You) is the debut single by Panamanian singer Flex from his debut studio album Te Quiero: Romantic Style in da World released on September 28, 2007. In 2008, the number serves as main...

2018 video game 2018 video gameWarhammer 40,000: Gladius – Relics of WarSteam headerDeveloper(s)Proxy StudiosPublisher(s)Slitherine SoftwareSeriesWarhammer 40,000Platform(s)Windows, LinuxReleaseJuly 12, 2018[1]Genre(s)Turn-based strategy, 4XMode(s)Single-player, multiplayer[2] Warhammer 40,000: Gladius – Relics of War is a turn-based strategy 4X video game developed by Proxy Studios and published by Slitherine Software for Windows and Linux on July 12, 2018. It is based on...

 

American digital bank This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (October 2022) Zenus BankTypePrivateIndustryFinancial servicesFounded2019FounderMushegh TovmasyanHeadquartersSan Juan, Puerto RicoProductsPersonal accounts; current accounts; Visa debit card (virtual & physical); international transfers (P2P) Domestic ACH & International Wire transfersServicesBusiness-to-Bu...

 

Italian swimmer Novella CalligarisNovella Calligaris at the 1972 OlympicsPersonal informationNationalityItalianBorn (1954-12-27) 27 December 1954 (age 68)PaduaHeight1.63 m (5 ft 4 in)Weight48 kg (106 lb)SportSportSwimmingStrokesFreestyle and medley Medal record Olympic Games 1972 Munich 400 m freestyle 1972 Munich 800 m freestyle 1972 Munich 400 m medley World Championships 1973 Belgrade 800 m freestyle 1973 Belgrade 400 m freestyle 1973 Belgrade 400 m medley Eur...

This article is an orphan, as no other articles link to it. Please introduce links to this page from related articles; try the Find link tool for suggestions. (November 2016) Full IndieFormationMay 2010; 13 years ago (2010-05)FounderJake Birkett, Alex VostrovHeadquartersVancouverLocationCanadaFieldsIndependent video game development Full Indie Full Indie is a Vancouver, Canada based non-profit organization by and for independent video game developers. The organization h...

 

South Korean handball player Yoo Hyun-ji Personal informationBorn (1984-07-16) 16 July 1984 (age 39)Incheon, South KoreaNationality South KoreanHeight 1.75 m (5 ft 9 in)Playing position PivotClub informationCurrent club Wonderful SamcheokNational teamYears Team Apps (Gls) South Korea 89 (111) Yoo Hyun-jiHangul유현지Revised RomanizationYu HyeonjiMcCune–ReischauerYu Hyŏnji In this Korean name, the family name is Yoo. Yoo Hyun-ji (born 16 July 1984) is a South Korean ha...

 

Port in Indonesia This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (June 2018) (Learn how and when to remove this template message) 6°16′03″S 107°09′54″E / 6.267390°S 107.164976°E / -6.267390; 107.164976 Cikarang Dry PortAerial view of Cikarang Dry PortLocationCountry Indon...

For other uses, see Josefov (disambiguation). Narrow streets of the ghetto, demolished between 1893 and 1913 The Old New Synagogue Josefov (also Jewish Quarter; German: Josefstadt) is a town quarter and the smallest cadastral area of Prague, Czech Republic, formerly the Jewish ghetto of the town. It is surrounded by the Old Town. The quarter is often represented by the flag of Prague's Jewish community, a yellow Magen David (Star of David) on a red field. History Jews are believed to have set...

 

American baseball player (1916-2000) Baseball player Dewey WilliamsWilliams, circa 1950CatcherBorn: (1916-02-05)February 5, 1916Durham, North Carolina, U.S.Died: March 19, 2000(2000-03-19) (aged 84)Williston, North Dakota, U.S.Batted: RightThrew: RightMLB debutJune 28, 1944, for the Chicago CubsLast MLB appearanceSeptember 26, 1948, for the Cincinnati RedsMLB statisticsBatting average.233Home runs3Runs batted in37 Teams Chicago Cubs (1944–1947) Cincinnati ...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!