Angular momentum diagrams (quantum mechanics)

In quantum mechanics and its applications to quantum many-particle systems, notably quantum chemistry, angular momentum diagrams, or more accurately from a mathematical viewpoint angular momentum graphs, are a diagrammatic method for representing angular momentum quantum states of a quantum system allowing calculations to be done symbolically. More specifically, the arrows encode angular momentum states in bra–ket notation and include the abstract nature of the state, such as tensor products and transformation rules.

The notation parallels the idea of Penrose graphical notation and Feynman diagrams. The diagrams consist of arrows and vertices with quantum numbers as labels, hence the alternative term "graphs". The sense of each arrow is related to Hermitian conjugation, which roughly corresponds to time reversal of the angular momentum states (c.f. Schrödinger equation). The diagrammatic notation is a considerably large topic in its own right with a number of specialized features – this article introduces the very basics.

They were developed primarily by Adolfas Jucys (sometimes translated as Yutsis) in the twentieth century.

Equivalence between Dirac notation and Jucys diagrams

Angular momentum states

The quantum state vector of a single particle with total angular momentum quantum number j and total magnetic quantum number m = j, j − 1, ..., −j + 1, −j, is denoted as a ket |j, m. As a diagram this is a singleheaded arrow.

Symmetrically, the corresponding bra is j, m|. In diagram form this is a doubleheaded arrow, pointing in the opposite direction to the ket.

In each case;

  • the quantum numbers j, m are often labelled next to the arrows to refer to a specific angular momentum state,
  • arrowheads are almost always placed at the middle of the line, rather than at the tip,
  • equals signs "=" are placed between equivalent diagrams, exactly like for multiple algebraic expressions equal to each other.

The most basic diagrams are for kets and bras:

Ket |j, m
Bra j, m|

Arrows are directed to or from vertices, a state transforming according to:

As a general rule, the arrows follow each other in the same sense. In the contrastandard representation, the time reversal operator, denoted here by T, is used. It is unitary, which means the Hermitian conjugate T equals the inverse operator T−1, that is T = T−1. Its action on the position operator leaves it invariant:

but the linear momentum operator becomes negative:

and the spin operator becomes negative:

Since the orbital angular momentum operator is L = x × p, this must also become negative:

and therefore the total angular momentum operator J = L + S becomes negative:

Acting on an eigenstate of angular momentum |j, m, it can be shown that:[1]

The time-reversed diagrams for kets and bras are:

Time reversed ket |j, m.
Time reversed bra j, m|.

It is important to position the vertex correctly, as forward-time and reversed-time operators would become mixed up.

Inner product

The inner product of two states |j1, m1 and |j2, m2 is:

and the diagrams are:

Inner product of |j1, m1 and |j2, m2, that is j2, m2|j1, m1.
Time reversed equivalent.

For summations over the inner product, also known in this context as a contraction (c.f. tensor contraction):

it is conventional to denote the result as a closed circle labelled only by j, not m:

Inner product contraction.

Outer products

The outer product of two states |j1, m1 and |j2, m2 is an operator:

and the diagrams are:

Outer product of |j1, m1 and |j2, m2, that is |j2, m2j1, m1|.
Time reversed equivalent.

For summations over the outer product, also known in this context as a contraction (c.f. tensor contraction):

where the result for T|j, m was used, and the fact that m takes the set of values given above. There is no difference between the forward-time and reversed-time states for the outer product contraction, so here they share the same diagram, represented as one line without direction, again labelled by j only and not m:

Outer product contraction.

Tensor products

The tensor product ⊗ of n states |j1, m1, |j2, m2, ... |jn, mn is written

and in diagram form, each separate state leaves or enters a common vertex creating a "fan" of arrows - n lines attached to a single vertex.

Vertices in tensor products have signs (sometimes called "node signs"), to indicate the ordering of the tensor-multiplied states:

  • a minus sign (−) indicates the ordering is clockwise, , and
  • a plus sign (+) for anticlockwise, .

Signs are of course not required for just one state, diagrammatically one arrow at a vertex. Sometimes curved arrows with the signs are included to show explicitly the sense of tensor multiplication, but usually just the sign is shown with the arrows left out.

Tensor product of |j1, m1, |j2, m2, |j3, m3, that is |j1, m1|j2, m2|j3, m3 = |j1, m1, j2, m2, j3, m3. Similarly for more than three angular momenta.
Time reversed equivalent.

For the inner product of two tensor product states:

there are n lots of inner product arrows:

Inner product of |j1, m1, j2, m2, j3, m3 and |j1, m1, j2, m2, j3, m3, that is j3, m3, j2, m2, j1, m1|j1, m1, j2, m2, j3, m3. Similarly for more than three pairs of angular momenta.
Time reversed equivalent.

Examples and applications

Diagram for a 6-j symbol, .
Diagram for a 9-j symbol, .

See also

References

  • Yutsis, Adolfas P.; Levinson, I. B.; Vanagas, V. V. (1962). Mathematical Apparatus of the Theory of Angular Momentum. Translated by A. Sen; R. N. Sen. Israel Program for Scientific Translations.
  • Wormer and Paldus (2006)[1] provides an in-depth tutorial in angular momentum diagrams.
  • I. Lindgren; J. Morrison (1986). Atomic Many-Body Theory. Chemical Physics. Vol. 13 (2nd ed.). Springer-Verlag. ISBN 978-3-540-16649-8.

Further reading

Notes

  1. ^ a b P.E.S. Wormer; J. Paldus (2006). "Angular Momentum Diagrams". Advances in Quantum Chemistry. 51. Elsevier: 59–124. Bibcode:2006AdQC...51...59W. doi:10.1016/S0065-3276(06)51002-0. ISBN 9780120348510. ISSN 0065-3276. These authors use the theta variant ϑ for the time reversal operator, here we use T.

Read other articles:

Bucha Municipio BuchaUbicación en el estado de Turingia Ubicación en el distritoCoordenadas 50°38′04″N 11°42′20″E / 50.634531, 11.705468Entidad Municipio • País Alemania • Estado Turingia • Distrito Saale-OrlaSuperficie   • Total 3,18 km² Altitud   • Media 438 m s. n. m.Población (31 de diciembre de 2017)   • Total 93 hab. • Densidad 29,25 hab/km²Huso horario UTC+01:00 y UTC+02:00Có...

 

Medal of Honor De Medal Of Honor (van links naar rechts) voor de landmacht (Army), de marine (Navy) en de luchtmacht (Air Force) Uitgereikt door de Verenigde Staten Type Medaille, gedragen om de hals Bestemd voor Militair personeel Uitgereikt voor Opvallende moed en ondernemingszin met gevaar voor eigen leven, boven wat de dienst vereist, in daadwerkelijk gevecht tegen een vijandelijke krijgsmacht. Statistieken Instelling 12 juli 1862 Eerst uitgereikt Amerikaanse Burgeroorlog Laatst...

 

Questa voce o sezione sull'argomento fonetica non cita le fonti necessarie o quelle presenti sono insufficienti. Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Occlusiva velare sonoraIPA - numero110 IPA - testoɡ IPA - immagine UnicodeU+0261 Entityɡ SAMPAg X-SAMPAg Kirshenbaumg Ascoltonoicon L'occlusiva velare sonora è una consonante, rappresentata con il simbolo [ɡ] nell'alfabeto fonetico internazionale (IPA...

Basketballspieler Pedro Ferrándiz Pedro Ferrándiz in der Basketball Hall of Fame, 2013 Spielerinformationen Voller Name Pedro Ferrándiz González Geburtstag 20. November 1928 Geburtsort Alicante, Spanien Sterbedatum 7. Juli 2022 im Alter von 93 Jahren und 229 Tagen Vereine als Trainer 1955–1957 Spanien 1945 Real Madrid (Nachwuchs)1957–1959 Spanien 1945 CB Hesperia1959–1962 Spanien 1945 Real Madrid1964–1965 Spanien 1945 Real Madrid1966–1975 Spanien 1945 Real Madrid Nationalmannsch...

 

Akikah (bahasa Arab: عقيقة, transliterasi: Aqiqoh) adalah pengurbanan hewan dalam syariat Islam, sebagai bentuk rasa syukur umat Islam terhadap Allah Subhanahu wa ta'ala mengenai bayi yang dilahirkan.[1] Hukum akikah menurut pendapat yang paling kuat adalah sunah muakadah, dan ini adalah pendapat jumhur ulama menurut hadis.[2][3] Kemudian ada ulama yang menjelaskan bahwa akikah sebagai penebus adalah artinya akikah itu akan menjadikan terlepasnya kekangan jin yang...

 

この項目では、現代のロシア連邦の陸軍について説明しています。ロシア帝国の陸軍については「ロシア帝国陸軍」をご覧ください。 ロシア陸軍Сухопутные войскаGround Forces of the Russian Federationロシア陸軍の紋章ロシア陸軍の軍旗創設1992年国籍 ロシアタイプ陸軍上級部隊 ロシア連邦軍主な戦歴 第一次チェチェン紛争 第二次チェチェン紛争 南オセチア紛争 ソマリ...

Battle of RaismesPart of the Flanders campaign in the War of the First CoalitionFrench commander Marquis de Dampierre was fatally wounded late in the Battle of Raismes.Date8–9 May 1793Locationnear Raismes, Austrian NetherlandsResult Coalition victoryBelligerents  Habsburg Monarchy  Great Britain Kingdom of Prussia French RepublicCommanders and leaders Prince Coburg François de Clerfayt Duke of York A. von Knobelsdorff Marquis Dampierre † François LamarcheStrength 60,0...

 

Second season of 'Drag Race España' Season of television series Drag Race EspañaSeason 2Promotional poster for season twoHosted bySupremme de LuxeJudges Supremme de Luxe Ana Locking Javier Ambrossi Javier Calvo No. of contestants12WinnerSharonneRunners-up Estrella Xtravaganza Venedita Von Däsh Miss CongenialitySamantha Ballentines Country of originSpainNo. of episodes11ReleaseOriginal networkATRESplayer Premium (Spain)WOW Presents Plus (International)Original release27 March (2022-03-...

 

Peter PatzakPeter Patzak dan Jan Zenker (2009)Lahir(1945-01-02)2 Januari 1945Wina, AustriaMeninggal11 Maret 2021(2021-03-11) (umur 76)Krems an der Donau, Austria Hilir, AustriaPekerjaanSutradara, penulis skenarioTahun aktif1973-2021 Peter Patzak (2 Januari 1945 – 11 Maret 2021)[1] adalah seorang sutradara dan penulis latar Austria. Ia telah menyutradarai 60 film sejak 1973. Filmnya Kassbach – Ein Porträt masuk dalam Festival Film Internasional Berlin ke-29...

2009–10 concert tour by Demi Lovato Demi Lovato: Live in ConcertTour by Demi LovatoAssociated albumsDon't ForgetHere We Go AgainStart dateJune 21, 2009End dateMay 28, 2010Legs2No. of shows51Box office$13,036,332Demi Lovato concert chronology Demi Live! Warm Up Tour (2008) Demi Lovato: Live in Concert(2009–10) A Special Night with Demi Lovato(2011–13) Demi Lovato: Live in Concert (also known as the Summer Tour 2009) was the first headlining concert tour by American singer Demi Lovato, in...

 

Railway station in Manitoba, Canada McCrearyThe station circa 1913General informationLocationRailway St. (between 1st & 2nd Avenues), McCreary, ManitobaCoordinates50°46′25″N 99°29′23″W / 50.7735°N 99.4897°W / 50.7735; -99.4897Line(s)Winnipeg – Churchill trainPlatforms1Tracks1ConstructionStructure typeSign postPlatform levels1HistoryOpened1912Services Preceding station Via Rail Following station Lauriertoward Churchill Winnipeg–Churchill Glenellatowa...

 

Radio station in MonsClassic 21MonsBroadcast areaBelgiumFrequency93.2 MHz (Brussels)90.8 MHz (Namur)99,1 MHz (Charleroi/Mons)104.6 MHz (Tournai/Nord-Pas-de-Calais, France)95.6 MHz (Liège/Verviers)87.6 MHz (Ardennes/Luxembourg)ProgrammingLanguage(s)FrenchOwnershipOwnerRTBFSister stationsLa PremièreTipikMusiq'3VivaCitéHistoryFirst air date1 April 2004Former call signsRadio 21 (1983-2004)LinksWebsiteclassic21.be Classic 21 is a Belgian public FM radio station, part of the RTBF broadcasting or...

This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (June 2018) (Learn how and when to remove this template message) Albion Press of 1898 at the Bodleian Library, Oxford. The Albion press is a model of early iron hand printing press, originally designed and manufactured in London by Richard Whittaker Cope (d. 1828?) around 1820. History The Albion press worked by ...

 

Japanese manga series and franchise Mob Psycho 100First tankōbon volume cover, featuring Shigeo Kageyamaモブサイコ100(Mobu Saiko Hyaku)GenreAction[1]Comedy[1]Supernatural[1] MangaWritten byOnePublished byShogakukanEnglish publisherNA: Dark Horse ComicsImprintUra Sunday ComicsMagazineUra SundayMangaONEDemographicShōnenOriginal runApril 18, 2012 – December 22, 2017Volumes16 Anime television seriesDirected byYuzuru Tachikawa[a]Takahiro Hasu...

 

Deklarasi Kemerdekaan Israel beralih ke halaman ini. Untuk pernyataan dukungan oleh Pemerintah Inggris terhadap pembentukan kediaman nasional bagi bangsa Yahudi, lihat Deklarasi Balfour. Deklarasi Pembentukan Negara IsraelDeclaration of the Establishment of the State of Israel (Inggris)LokasiTel AvivPenulisFirst Draft:Zvi BerensonSecond Draft:Moshe ShertokDavid RemezFelix RosenbluethMoshe ShapiraAharon ZislingThird Draft:David Ben-GurionYehuda Leib FishmanAharon ZislingMoshe ShertokPenandatan...

American television journalist (born 1976) Kristen WelkerWelker in 2018Born (1976-07-01) July 1, 1976 (age 47)Philadelphia, Pennsylvania, U.S.EducationHarvard University (BA)OccupationsJournalistcorrespondentEmployerNBC NewsSpouse John Hughes ​(m. 2017)​Children1 Kristen Welker (born July 1, 1976[1]) is an American television journalist working for NBC News. She serves as a White House correspondent based in Washington, D.C.,[2] and served as ...

 

Artikel ini tidak memiliki referensi atau sumber tepercaya sehingga isinya tidak bisa dipastikan. Tolong bantu perbaiki artikel ini dengan menambahkan referensi yang layak. Tulisan tanpa sumber dapat dipertanyakan dan dihapus sewaktu-waktu.Cari sumber: Selamat Pagi Indonesia acara MetroTV – berita · surat kabar · buku · cendekiawan · JSTOR Untuk acara televisi Trans7, lihat Selamat Pagi. Untuk kegunaan lain, lihat Selamat Pagi Indonesia. Selamat P...

 

國分太一男演员原文名国分 太一罗马拼音Kokubun Taichi国籍 日本出生 (1974-09-02) 1974年9月2日(49歲) 日本東京都東久留米市职业演員、歌手、主持、新聞主播、鍵盤手语言日語配偶圈外女性(2015年结婚)儿女兩女音乐类型日語流行音樂演奏乐器鋼琴出道日期1994年活跃年代1988年至今经纪公司傑尼斯事務所( - 2021年3月31日)TOKIO株式会社(2021年4月1日 - 至今)相关团体TOKI...

Israeli politician Menachem YedidFaction represented in the Knesset1965–1974Gahal1974–1977Likud Personal detailsBorn15 January 1918Aleppo, SyriaDied5 May 2013(2013-05-05) (aged 95) Menachem Yedid (Hebrew: מנחם ידיד; 15 January 1918 – 5 May 2013) was an Israeli politician who served as a member of the Knesset for Gahal and Likud between 1965 and 1977. Biography Born in Aleppo in Syria in 1918, Yedid was educated at a high school and yeshiva, before making aliyah to Mandatory...

 

Arabic varieties of Southeastern Turkey Anatolian Arabicلهجات عربية أناضوليةNative toTurkeyNative speakers520,000 (2014)[1]Language familyAfro-Asiatic SemiticWest SemiticCentral SemiticArabicMesopotamianQeltuAnatolian ArabicWriting systemArabic alphabetLanguage codesISO 639-3None (mis)Glottologanat1256ELPSiirti ArabicMap of Anatolian Arabic speaking provinces in Turkey as of 1965 census Anatolian Arabic encompasses several qeltu varieties of Arabic spoken i...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!