Admittance

In electrical engineering, admittance is a measure of how easily a circuit or device will allow a current to flow. It is defined as the reciprocal of impedance, analogous to how conductance and resistance are defined. The SI unit of admittance is the siemens (symbol S); the older, synonymous unit is mho, and its symbol is ℧ (an upside-down uppercase omega Ω). Oliver Heaviside coined the term admittance in December 1887.[1] Heaviside used Y to represent the magnitude of admittance, but it quickly became the conventional symbol for admittance itself through the publications of Charles Proteus Steinmetz. Heaviside probably chose Y simply because it is next to Z in the alphabet, the conventional symbol for impedance.[2]

Admittance Y, measured in siemens, is defined as the inverse of impedance Z, measured in ohms:

Resistance is a measure of the opposition of a circuit to the flow of a steady current, while impedance takes into account not only the resistance but also dynamic effects (known as reactance). Likewise, admittance is not only a measure of the ease with which a steady current can flow, but also the dynamic effects of the material's susceptance to polarization:

where

The dynamic effects of the material's susceptance relate to the universal dielectric response, the power law scaling of a system's admittance with frequency under alternating current conditions.

Conversion from impedance to admittance

Parts of this article or section rely on the reader's knowledge of the complex impedance representation of capacitors and inductors and on knowledge of the frequency domain representation of signals.

The impedance, Z, is composed of real and imaginary parts, where

Admittance, just like impedance, is a complex number, made up of a real part (the conductance, G), and an imaginary part (the susceptance, B), thus:

where G (conductance) and B (susceptance) are given by:

The magnitude and phase of the admittance are given by:

where

Note that (as shown above) the signs of reactances become reversed in the admittance domain; i.e. capacitive susceptance is positive and inductive susceptance is negative.

Shunt admittance in electrical power systems modeling

In the context of electrical modeling of transformers and transmission lines, shunt components that provide paths of least resistance in certain models are generally specified in terms of their admittance. Each side of most transformer models contains shunt components which model magnetizing current and core losses. These shunt components can be referenced to the primary or secondary side. For simplified transformer analysis, admittance from shunt elements can be neglected. When shunt components have non-negligible effects on system operation, the shunt admittance must be considered. In the diagram below, all shunt admittances are referred to the primary side. The real and imaginary components of the shunt admittance, conductance and susceptance, are represented by Gc and B, respectively.[3]

Transmission lines can span hundreds of kilometers, over which the line's capacitance can affect voltage levels. For short length transmission line analysis, which applies to lines shorter than 80 kilometres (50 mi), this capacitance can be ignored and shunt components are not necessary in the model. Lines from 80 to about 250 kilometres (50 to about 155 mi), generally considered to be in the medium-line category, contain a shunt admittance governed by[4][5] where

  • Y is the total shunt admittance;
  • y is the shunt admittance per unit length;
  • l is the length of the transmission line; and
  • C is the capacitance of the line.

See also

References

  1. ^ Ushida, Jun; Tokushima, Masatoshi; Shirane, Masayuki; Gomyo, Akiko; Yamada, Hirohito (2003). "Immittance matching for multidimensional open-system photonic crystals". Physical Review B. 68 (15): 155115. arXiv:cond-mat/0306260. Bibcode:2003PhRvB..68o5115U. doi:10.1103/PhysRevB.68.155115. S2CID 119500762.
  2. ^ Ronald R. Kline, Steinmetz: Engineer and Socialist, p. 88, Johns Hopkins University Press, 1992 ISBN 0801842980.
  3. ^ Grainger, John J.; Stevenson, William D. (1994). Power System Analysis. New York: McGraw-Hill.
  4. ^ J. Glover, M. Sarma, and T. Overbye, Power System Analysis and Design, Fifth Edition, Cengage Learning, Connecticut, 2012, ISBN 978-1-111-42577-7, Chapter 5 Transmission Lines: Steady-State Operation
  5. ^ Ghosh, Arindam. "Equivalent- π Representation of a Long Line". Retrieved 30 Apr 2018.

Read other articles:

The Sluggish TanakaSampul volume pertama yang menampilkan karakter utama Tanaka田中くんはいつもけだるげ(Tanaka-kun wa Itsumo Kedaruge)GenrePenggalan kehidupan, komedi MangaPengarangNozomi UdaPenerbitSquare EnixPenerbit bahasa IndonesiaElex Media KomputindoMajalahGangan OnlineDemografiShōnenTerbit26 April 2014 – sekarangVolume9 Seri animeSutradaraShin'ya KawatsuraSkenarioAkemi OmodeMusikHiromi MizutaniStudioSilver LinkPelisensiNA Sentai FilmworksSaluranasliTokyo MX, MBS, HTV, TV...

 

Manat AzerbaijanAzərbaycan manatı (Azeri) Uang kertas manat AzerbaijanUang koin manat Azerbaijan ISO 4217KodeAZNNomor944DenominasiSubsatuan 1/100qəpikSimbol₼Uang kertas Sering digunakan1, 5, 10, 20, 50, 100, 200 ₼ Jarang digunakan500 ₼Uang koin1, 3, 5, 10, 20, 50 qəpikDemografiPengguna AzerbaijanEmisiBank sentralBank Sentral Azerbaijan Situs webwww.cbar.azValuasiInflasi4,4% (2021) SumberStatista MetodeCPIManat (₼) (ISO 4217: AZN) adalah mat...

 

L'Aubépin Entidad subnacional Escudo L'AubépinLocalización de L'Aubépin en Francia Coordenadas 46°26′23″N 5°22′24″E / 46.439722222222, 5.3733333333333Entidad Comuna de Francia y Comuna delegada • País  Francia • Región Borgoña-Franco Condado • Departamento Jura • Distrito Lons-le-Saunier • Cantón Saint-Amour • Mancomunidad Comunidad de comunas Puerta de jura • Comuna Les Trois-ChâteauxAlcalde delegado Ala...

Detail uit het Tapijt van Bayeux waarop Rogier van Beaumont mogelijk te zien is aan de tafel (tweede van links). Rogier van Beaumont (? - 1094) was een Normandisch edelman en heer van Beaumont, Vieilles, Pont-Audemer en Beaumontel. Hij werd geboren voor 1035 als zoon van Humphrey de Vieilles en Aubrée de la Haie en had minstens twee broers, Robert en Willem.[1] Hij huwde tussen 1045 en 1046 met Adela van Meulan waarmee hij minstens drie zonen en één dochter kreeg.[2] Hij wo...

 

Parlamentsgebäude in Beirut Die Abgeordnetenkammer (französisch Chambre des députés, arabisch مجلس النواب, DMG Maǧlis an-Nuwwāb) ist das Einkammer-Parlament des Libanon.[1] Sie wird auf jeweils vier Jahre in allgemeinen Wahlen gewählt und besteht gegenwärtig aus 128 Abgeordneten. Ihre Hauptfunktionen sind die Wahl des Präsidenten, die Bestätigung der Regierung (trotz der Ernennung durch den Präsidenten müssen Ministerpräsident und Kabinett das Vertrauen des ...

 

Menteri Perindustrian IndonesiaPetahanaTidak adasejak 20 Oktober 2014Ditunjuk olehPresiden IndonesiaPejabat perdanaTungki AriwibowoDibentuk23 Maret 1988 Berikut adalah daftar orang yang pernah menjabat sebagai Wakil Menteri Perindustrian atau Menteri Muda PerindustrianIndonesia. No Foto Nama Kabinet Menteri Perindustrian Dari Sampai Keterangan 1 Tungki Ariwibowo Pembangunan V Hartarto Sastrosoenarto 23 Maret 1988 17 Maret 1993 Bernama Menteri Muda Perindustrian 2 Alex Retraubun Indonesia...

Košice Open Challenger SeriesDatos generalesSede KošiceEslovaquia EslovaquiaCategoría Challenger SeriesSuperficie polvo de ladrilloCuadro 32S/32Q/16DPremio €30,000+H [www.tenista.sk Sitio oficial] [editar datos en Wikidata] Fabio Fognini en el Košice Open 2010Yuri Schukin en el Košice Open 2010 El Košice Open es un torneo profesional de tenis disputado en pistas de polvo de ladrillo.Pertenece al ATP Challenger Series. Se juega desde el año 2003 sobre tierra batida , en Koš...

 

This article contains content that is written like an advertisement. Please help improve it by removing promotional content and inappropriate external links, and by adding encyclopedic content written from a neutral point of view. (March 2023) (Learn how and when to remove this template message) Automotive club for Porsche owners in the United States and Canada Porsche Club of AmericaAbbreviationPCAFormation1955TypeNonprofit 501(c)(7)PurposeSocial & Recreational Car ClubHeadquartersColumb...

 

Kill Your Television redirects here. For the album by the Reunion Show, see the Reunion Show. 1991 studio album by Ned's Atomic DustbinGod FodderStudio album by Ned's Atomic DustbinReleased1 April 1991RecordedDecember 1990–January 1991StudioGreenhouse Studios, LondonGenre Alternative rock grebo[1] shoegaze[2] Length40:42[3]LabelColumbiaProducer Ned's Atomic Dustbin Jessica Corcoran Ned's Atomic Dustbin chronology Bite(1990) God Fodder(1991) Are You Normal?(19...

1973 film by Sydney Pollack This article is about the 1973 film. For other uses, see The Way We Were (disambiguation). The Way We WereTheatrical release poster by Bill GoldDirected bySydney PollackScreenplay byArthur LaurentsBased onThe Way We Were1972 novelby Arthur LaurentsProduced byRay StarkStarring Barbra Streisand Robert Redford Bradford Dillman Viveca Lindfors Herb Edelman Murray Hamilton Patrick O'Neal Lois Chiles CinematographyHarry Stradling Jr.Edited byJohn F. BurnettMusic byMarvin...

 

  2019 Czech Grand PrixRace detailsRace 10 of 19 races in the2019 Grand Prix motorcycle racing seasonDate4 August 2019Official nameMonster Energy Grand Prix České republikyLocationBrno Circuit, Brno, Czech RepublicCoursePermanent racing facility5.403 km (3.357 mi)MotoGPPole positionRider Marc Márquez HondaTime 2:02.753 Fastest lapRider Álex Rins SuzukiTime 1:56.912 on lap 3 PodiumFirst Marc Márquez HondaSecond Andrea Dovizioso DucatiThird Jack Miller DucatiMoto2Pole p...

 

Burmese royal court dancer In this Burmese name, the given name is Yindaw Ma Lay. There is no family name. Yindaw Ma LayYindaw Ma LayBorn1846Yindaw, Pyawbwe township, MandalayDied1916 (1917) (aged 70)NationalityBurmeseOccupationRoyal court dancer Yindaw Ma Lay (Burmese: ယင်းတော်မလေး; pronounced [jíɴ dɔʼ mɑ lé]; 1846 – c. 1916) was a Burmese royal court dancer, best known during the late Konbaung era. Yindaw Ma Lay is said to be one of the two ...

This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article consists almost entirely of a plot summary. Please help improve the article by adding more real-world context. (July 2015) (Learn how and when to remove this template message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may...

 

Fortress on the Danube, Bulgaria This article does not cite any sources. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Medjidi Tabia fortress – news · newspapers · books · scholar · JSTOR (November 2021) (Learn how and when to remove this template message) You can help expand this article with text translated from the corresponding article in German. (Septem...

 

American bishop (1833–1951) The Right ReverendJames Ingall WedgwoodPresiding Bishop of the Liberal Catholic ChurchChurchLiberal Catholic ChurchOrdersConsecration1916by Frederick Samuel WilloughbyPersonal detailsBorn24 March 1883Died13 March 1951DenominationIndependent CatholicismJames Ingall Wedgwood (24 March 1883 – 13 March 1951) was the first Presiding Bishop of the Liberal Catholic Church. Wedgwood was a former Anglican, a member of the Theosophical Society and a member of a co-M...

American late night comedy talk show Chelsea LatelyGenreTalk show, ComedyCreated byBrody StevensDirected byJim YukichStarringChelsea HandlerNarrated byMike RockCountry of originUnited StatesOriginal languageEnglishNo. of seasons7No. of episodes1,048ProductionExecutive producers Chelsea Handler Tom Brunelle Sue Murphy Gary Snoodnian Brad Wollack Producers Daniel Isaacson Tyler Spindel Camera setupMulti-cameraRunning time22 to 24 minutesProduction companyBorderline Amazing ProductionsOriginal r...

 

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Desember 2022. Gunung KatarinaGabal KatrîneTitik tertinggiKetinggian2.629 m (8.625 ft)[a][2]Puncak2.404 m (7.887 ft)[2]Masuk dalam daftarTitik tinggi negaraKetonjolan tertinggiKoordinat28°30′42″N 33°57′09″Eþ...

 

For related races, see 1938 United States gubernatorial elections. 1938 Idaho gubernatorial election ← 1936 November 8, 1938 1940 →   Nominee C. A. Bottolfsen C. Ben Ross Party Republican Democratic Popular vote 106,268 77,697 Percentage 57.30% 41.89% Governor before election Barzilla Clark Democratic Elected Governor C. A. Bottolfsen Republican Elections in Idaho Federal government Presidential elections 1892 1896 1900 1904 1908 1912 1916 1920 1924 1928 1932 1...

كلية الطب بجامعة إلينوي معلومات التأسيس 1882  الموقع الجغرافي البلد الولايات المتحدة  إحصاءات الموقع الموقع الرسمي  تعديل مصدري - تعديل   جامعة إلينوي كلية الطب (بالإنجليزية: University of Illinois College of Medicine)‏ هي إحدى الكليات لتدريس الطب في الولايات المتحدة الأمريكية.[1 ...

 

アンドラCF(英語版)とは異なります。 FCアンドラ原語表記 Futbol Club Andorra愛称 Els Tricolorsクラブカラー     青・    黄・    赤創設年 1942年所属リーグ セグンダ・ディビシオン所属ディビジョン 2部(2022-23)ホームタウン アンドラ・ラ・ベリャホームスタジアム エスタディ・ナシオナル収容人数 3,306代表者 ジェラール・ピケ (90%) グルー...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!