Abuse of notation

In mathematics, abuse of notation occurs when an author uses a mathematical notation in a way that is not entirely formally correct, but which might help simplify the exposition or suggest the correct intuition (while possibly minimizing errors and confusion at the same time). However, since the concept of formal/syntactical correctness depends on both time and context, certain notations in mathematics that are flagged as abuse in one context could be formally correct in one or more other contexts. Time-dependent abuses of notation may occur when novel notations are introduced to a theory some time before the theory is first formalized; these may be formally corrected by solidifying and/or otherwise improving the theory. Abuse of notation should be contrasted with misuse of notation, which does not have the presentational benefits of the former and should be avoided (such as the misuse of constants of integration[1]).

A related concept is abuse of language or abuse of terminology, where a term — rather than a notation — is misused. Abuse of language is an almost synonymous expression for abuses that are non-notational by nature. For example, while the word representation properly designates a group homomorphism from a group G to GL(V), where V is a vector space, it is common to call V "a representation of G". Another common abuse of language consists in identifying two mathematical objects that are different, but canonically isomorphic.[2] Other examples include identifying a constant function with its value, identifying a group with a binary operation with the name of its underlying set, or identifying to the Euclidean space of dimension three equipped with a Cartesian coordinate system.[3]

Examples

Structured mathematical objects

Many mathematical objects consist of a set, often called the underlying set, equipped with some additional structure, such as a mathematical operation or a topology. It is a common abuse of notation to use the same notation for the underlying set and the structured object (a phenomenon known as suppression of parameters[3]). For example, may denote the set of the integers, the group of integers together with addition, or the ring of integers with addition and multiplication. In general, there is no problem with this if the object under reference is well understood, and avoiding such an abuse of notation might even make mathematical texts more pedantic and more difficult to read. When this abuse of notation may be confusing, one may distinguish between these structures by denoting the group of integers with addition, and the ring of integers.

Similarly, a topological space consists of a set X (the underlying set) and a topology which is characterized by a set of subsets of X (the open sets). Most frequently, one considers only one topology on X, so there is usually no problem in referring X as both the underlying set, and the pair consisting of X and its topology — even though they are technically distinct mathematical objects. Nevertheless, it could occur on some occasions that two different topologies are considered simultaneously on the same set. In which case, one must exercise care and use notation such as and to distinguish between the different topological spaces.

Function notation

One may encounter, in many textbooks, sentences such as "Let be a function ...". This is an abuse of notation, as the name of the function is and denotes the value of for the element of its domain. More precisely correct phrasings include "Let be a function of the variable ..." or "Let be a function ..." This abuse of notation is widely used, as it simplifies the formulation, and the systematic use of a correct notation quickly becomes pedantic.

A similar abuse of notation occurs in sentences such as "Let us consider the function ...", when in fact is a polynomial expression, not a function per se. The function that associates to can be denoted Nevertheless, this abuse of notation is widely used, since it is more concise but generally not confusing.

Equality vs. isomorphism

Many mathematical structures are defined through a characterizing property (often a universal property). Once this desired property is defined, there may be various ways to construct the structure, and the corresponding results are formally different objects, but which have exactly the same properties (i.e., isomorphic). As there is no way to distinguish these isomorphic objects through their properties, it is standard to consider them as equal, even if this is formally wrong.[2]

One example of this is the Cartesian product, which is often seen as associative:

.

But this is strictly speaking not true: if , and , the identity would imply that and , and so would mean nothing. However, these equalities can be legitimized and made rigorous in category theory—using the idea of a natural isomorphism.

Another example of similar abuses occurs in statements such as "there are two non-Abelian groups of order 8", which more strictly stated means "there are two isomorphism classes of non-Abelian groups of order 8".

Equivalence classes

Referring to an equivalence class of an equivalence relation by x instead of [x] is an abuse of notation. Formally, if a set X is partitioned by an equivalence relation ~, then for each xX, the equivalence class {yX | y ~ x} is denoted [x]. But in practice, if the remainder of the discussion is focused on the equivalence classes rather than the individual elements of the underlying set, then it is common to drop the square brackets in the discussion.

For example, in modular arithmetic, a finite group of order n can be formed by partitioning the integers via the equivalence relation "x ~ y if and only if xy (mod n)". The elements of that group would then be [0], [1], ..., [n − 1], but in practice they are usually denoted simply as 0, 1, ..., n − 1.

Another example is the space of (classes of) measurable functions over a measure space, or classes of Lebesgue integrable functions, where the equivalence relation is equality "almost everywhere".

Subjectivity

The terms "abuse of language" and "abuse of notation" depend on context. Writing "f : AB" for a partial function from A to B is almost always an abuse of notation, but not in a category theoretic context, where f can be seen as a morphism in the category of sets and partial functions.

See also

References

  1. ^ "Common Errors in College Math". math.vanderbilt.edu. Retrieved 2019-11-03.
  2. ^ a b "Glossary — Abuse of notation". abstractmath.org.
  3. ^ a b "More about the languages of math — Suppression of parameters". abstractmath.org.

Read other articles:

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada Februari 2023. SMPN 11 BatamInformasiDidirikan1997JenisSekolah NegeriAlamatLokasiPerumahan Bumi Sarana Indah Batu Aji, Batam, Kepri,  IndonesiaMotoMotoWidya Gemilang SMPN 11 Batam, merupakan salah satu Sekolah Menengah Pertama Negeri yang ada di Provinsi Kepula...

 

SkäragylInsjöLand SverigeLänSkåne länKommunÖstra Göinge kommunLandskapSkåneSockenGlimåkra sockenKoordinater   WGS 8456°21′21″N 14°15′55″Ö / 56.35595°N 14.26534°Ö / 56.35595; 14.26534 (Skäragyl, Skåne)  SWEREF 99 TM6245939, 454603 Skäragyl Topografiska kartan över Skäragyl. FlödenHuvudavrinnings­områdeHelge ås huvudavrinningsområde (88000)ÖvrigtSjöID624863-140481Limnisk ekoregionSydö...

 

У этого термина существуют и другие значения, см. Черновцы (значения). Международный аэропорт Черновцы ИАТА: CWC – ИКАО: UKLN Информация Вид аэропорта гражданский Страна Украина Расположение Черновцы Дата открытия 1924 Высота НУМ +252 м Часовой пояс UTC+2 Сайт airportchernivtsi.cv.ua/… Карта...

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (ديسمبر 2020) تشارلز إف. سبراغ (بالإنجليزية: Charles F. Sprague)‏    معلومات شخصية الميلاد 10 يونيو 1857  بوسطن  الوفاة 30 يناير 1902 (44 سنة)   بروفيدنس، رود آيلاند  مكان ال...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) روجر بيكار معلومات شخصية الميلاد 13 يناير 1935 (88 سنة)  مونتريال  مواطنة كندا  الوزن 200 رطل  الحياة العملية المهنة لاعب هوكي الجليد  الرياضة هوكي الج...

 

«Сент-Френсіз» Повна назва Футбольний клубСент-Френсіз Засновано Населений пункт Бає Лазаре,  Сейшельські Острови Стадіон «Стад Лініте» Вміщує 10 000 Ліга Перший дивізіон 2014 10-те Домашня Футбольний клуб Сент-Френсіз або просто «Сент-Френсіз» (англ. Saint Francis Football Club) ...

  لمعانٍ أخرى، طالع مارك سميث (توضيح). هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يوليو 2019) مارك سميث معلومات شخصية الميلاد سنة 1950 (العمر 72–73 سنة)  مواطنة الولايات المتحدة  الحياة العملية المهنة مهند...

 

Antonia's LinePoster JermanSutradara Marleen Gorris Produser Gerard Cornelisse Hans De Weers Hans de Wolf Ditulis oleh Marleen Gorris PemeranWilleke van AmmelrooyEls DottermansJan DecleirVictor LöwJohan HeldenberghPenyuntingWiebe van der VlietDistributorAsmik Ace EntertainmentTanggal rilis 12 September 1995 (1995-09-12) (FFIT) 21 September 1995 (1995-09-21) Durasi102 menitNegara Belanda Bahasa Belanda Pendapatankotor$4,228,275 Antonia's Line (judul asli: Antonia) adalah sebuah ...

 

Institut Penelitian Perdamaian Internasional StockholmTanggal pendirian06 Mei 1966 (1966-05-06)TujuanMenyediakan data, analisis dan rekomendasi, berdasarkan sumber terbuka, kepada pembuat kebijakan, peneliti, media dan masyarakat yang berminatSitus webwww.sipri.org Markas SIPRI di Solna di luar kota Stockholm. Institut Penelitian Perdamaian Internasional Stockholm atau SIPRI (bahasa Inggris: Stockholm International Peace Research Institute), adalah sebuah lembaga internasional yang b...

حامل رأس الغول الاسم اللاتيني Perseus المطلع المستقيم 3 الميل +45 ربعية NQ1 المساحة 615 درجة مربعة. (24th) نجومباير/فلامستيد 65 نجوم مع كواكب 7 نجوم ألمع من 3.00 قدر 5 النجوم ضمن 10.00 فرسخ فلكي (32.62 سنة ضوئية) 0 ألمع نجم المرفق (المرفق) (1.79قدر ظاهري) أقرب نجم G 174-14(33.62 سنة ضوئية, 10.31 فرسخ...

 

Sailing at the Olympics Men's 470at the Games of the XXVII Olympiad470 class dinghyVenueDarling Point Cruising Yacht Club of Australia, SydneyDateFirst race: 20 September 2000Last race: 28 September 2000Competitors29 Boats 58 Sailors from 29 nationsMedalists Tom KingMark Turnbull  Australia Paul FoersterRobert Merrick  United States Juan de la FuenteJavier Conte  Argentina← 19962004 → Sailing at the2000 Summer OlympicsMistralmenwomenEuropewomenLa...

 

Belgian singer and actress (born 1996) Laura TesoroTesoro in 2016Background informationBorn (1996-08-19) 19 August 1996 (age 27)Antwerp, BelgiumGenresPopR&BfunkdanceOccupation(s)SingeractressInstrument(s)VocalsYears active2008–presentMusical artist Laura Tesoro (born 19 August 1996) is a Belgian singer and actress. She represented Belgium in the Eurovision Song Contest 2016 with the song What's the Pressure. Tesoro is also known for portraying Charlotte on the Flemish soap opera Fa...

British educator and reformer For the American philanthropist and socialite, see Charlotte Osgood Mason. For the basketball and softball coach, see Charlotte Mason (coach). Charlotte Maria Shaw MasonBorn1 January 1842Bangor, Gwynedd, WalesDied16 January 1923(1923-01-16) (aged 81)Ambleside, EnglandAlma materHome and Colonial SocietyOccupationEducatorEmployer(s)Bishop Otter Teacher Training College, self-employed Charlotte Maria Shaw Mason (1 January 1842 – 16 January 1923) was a Br...

 

DC NationDC Nation logoNetworkCartoon NetworkLaunchedMarch 3, 2012 (2012-03-03)ClosedMarch 29, 2014 (2014-03-29)Country of originUnited States DC Nation was a programming block of DC Comics series and shorts that aired on American television channel Cartoon Network on Saturday morning. It premiered on March 3, 2012, and was produced by Warner Bros. Animation. Some of the shows in DC Nation include Green Lantern: The Animated Series and Young Justice (with Beware ...

 

Constituency of the French Fifth Republic 2nd constituency of French PolynesiainlineConstituency of the National Assembly of FranceLocation in French PolynesiaDeputySteve ChaillouxTavini HuiraatiraDepartmentFrench Polynesia (overseas collectivity) Politics of France Political parties Elections Previous Next French Polynesia's 2nd constituency is a French legislative constituency in French Polynesia. It is currently represented by Nicole Sanquer of A here ia Porinetia. Following the 2010 redis...

American animated sitcom Solar OppositesGenre Adult animation Animated sitcom Science fiction Created by Justin Roiland Mike McMahan Voices of Justin Roiland Thomas Middleditch Sean Giambrone Mary Mack Dan Stevens ComposerChris WestlakeCountry of originUnited StatesOriginal languageEnglishNo. of seasons4No. of episodes38 + 2 specials (list of episodes)ProductionExecutive producers Justin Roiland (seasons 1–3) Mike McMahan Josh Bycel Anthony Chun (season 2–present) Producers Sydney Ryan (s...

 

1995 single by Mike + The Mechanics Over My ShoulderSingle by Mike + The Mechanicsfrom the album Beggar on a Beach of Gold B-side Something to Believe In Always the Last to Know Word of Mouth Released13 February 1995 (1995-02-13)Length3:34Label Virgin Atlantic Songwriter(s) Mike Rutherford Paul Carrack Producer(s) Mike Rutherford Christopher Neil Mike + The Mechanics singles chronology Everybody Gets A Second Chance (1991) Over My Shoulder (1995) A Beggar on a Beach of Gold (19...

 

Harry von Meter Información personalOtros nombres Harry V. Meter, Harry Van Meteer, Harry Van Meter, Harry Von Meter, Harry van MeterNacimiento 29 de marzo de 1871 Malta Bend (Misuri), Estados UnidosFallecimiento 2 de junio de 1956 Los Ángeles, California, Estados UnidosCausa de muerte Enfermedad Nacionalidad EstadounidenseLengua materna Inglés Información profesionalOcupación Actor[editar datos en Wikidata] Harry von Meter (29 de marzo de 1871 – 2 de junio de 1956) fue ...

Nissan Ireland Ltd.TypeSubsidiaryIndustryAutomotiveFounded2 February 1977; 46 years ago (1977-02-02)HeadquartersDublin, IrelandProductsAutomobilesParentNissanWebsitewww.nissan.ie Nissan Ireland Ltd. is the Irish subsidiary of Nissan Motor Company of Japan. With an assembly plant for motor vehicles, it was part of the automotive industry in Ireland.[1] Company history The company was founded in Dublin on 2 February 1977.[2] This was preceded by a relationship ...

 

Reduction in gain due to nonlinearity This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Gain compression – news · newspapers · books · scholar · JSTOR (March 2022) (Learn how and when to remove this template message) Power transfer curves for an amplifier with a gain of 3 (4.77 dB). The green curve repres...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!