3-Hydroxyflavone is a chemical compound. It is the backbone of all flavonols, a type of flavonoid. It is a synthetic compound, which is not found naturally in plants. It serves as a model molecule as it possesses an excited-state intramolecular proton transfer (ESIPT) effect[1] to serve as a fluorescent probe to study membranes for example[2] or intermembrane proteins.[3] The green tautomer emission (λmax ≈ 524 nm) and blue-violet normal emission (λmax ≈ 400 nm) originate from two different ground state populations of 3HF molecules.[4] The phenomenon also exists in natural flavonols. Although 3-hydroxyflavone is almost insoluble in water, its aqueous solubility (hence bio-availability) can be increased by encapsulation in cyclodextrin cavities.[5]
^Guharay, Jayanti; Chaudhuri, Rupali; Chakrabarti, Abhijit; Sengupta, Pradeep K. (1997). "Excited state proton transfer fluorescence of 3-hydroxyflavone in model membranes". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 53 (3): 457–462. Bibcode:1997AcSpA..53..457G. doi:10.1016/S1386-1425(96)01825-2.
^Chaudhuri, Sudip; Banerjee, Anwesha; Basu, Kaushik; Sengupta, Bidisa; Sengupta, Pradeep K. (2007). "Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects". International Journal of Biological Macromolecules. 41 (1): 42–48. doi:10.1016/j.ijbiomac.2006.12.003. PMID17239435.
^Sarkar, Munna; Guha Ray, Jayanti; Sengupta, Pradeep K. (1996). "Effect of reverse micelles on the intramolecular excited state proton transfer (ESPT) and dual luminescence behaviour of 3-hydroxyflavone". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 52 (2): 275–278. Bibcode:1996AcSpA..52..275S. doi:10.1016/0584-8539(95)01622-8.
^Pahari, Biswapathik; Chakraborty, Sandipan; Sengupta, Pradeep K. (2011). "Encapsulation of 3-hydroxyflavone in γ-cyclodextrin nanocavities: Excited state proton transfer fluorescence and molecular docking studies". Journal of Molecular Structure. 1006 (1–3): 483–488. Bibcode:2011JMoSt1006..483P. doi:10.1016/j.molstruc.2011.09.055.