1 42 polytope
In 8-dimensional geometry , the 142 is a uniform 8-polytope , constructed within the symmetry of the E8 group.
Its Coxeter symbol is 142 , describing its bifurcating Coxeter-Dynkin diagram , with a single ring on the end of the 1-node sequences.
The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241 , and the quadrirectified 421 .
These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8 dimensions, made of uniform polytope facets and vertex figures , defined by all non-empty combinations of rings in this Coxeter-Dynkin diagram : .
142 polytope
The 142 is composed of 2400 facets: 240 132 polytopes, and 2160 7-demicubes (141 ). Its vertex figure is a birectified 7-simplex .
This polytope, along with the demiocteract , can tessellate 8-dimensional space, represented by the symbol 152 , and Coxeter-Dynkin diagram: .
Alternate names
E. L. Elte (1912) excluded this polytope from his listing of semiregular polytopes, because it has more than two types of 6-faces, but under his naming scheme it would be called V17280 for its 17280 vertices.[ 1]
Coxeter named it 142 for its bifurcating Coxeter-Dynkin diagram , with a single ring on the end of the 1-node branch.
Diacositetracont-dischiliahectohexaconta-zetton (acronym bif ) - 240-2160 facetted polyzetton (Jonathan Bowers)[ 2]
Coordinates
The 17280 vertices can be defined as sign and location permutations of:
All sign combinations (32): (280×32=8960 vertices)
(4, 2, 2, 2, 2, 0, 0, 0)
Half of the sign combinations (128): ((1+8+56)×128=8320 vertices)
(2, 2, 2, 2, 2, 2, 2, 2)
(5, 1, 1, 1, 1, 1, 1, 1)
(3, 3, 3, 1, 1, 1, 1, 1)
The edge length is 2√2 in this coordinate set, and the polytope radius is 4√2 .
Construction
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram : .
Removing the node on the end of the 2-length branch leaves the 7-demicube , 141 , .
Removing the node on the end of the 4-length branch leaves the 132 , .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 7-simplex , 042 , .
Seen in a configuration matrix , the element counts can be derived by mirror removal and ratios of Coxeter group orders.[ 3]
Configuration matrix
E8
k -face
fk
f0
f1
f2
f3
f4
f5
f6
f7
k -figure
notes
A7
( )
f0
17280
56
420
280
560
70
280
420
56
168
168
28
56
28
8
8
2r{36 }
E8 /A7 = 192*10!/8! = 17280
A4 A2 A1
{ }
f1
2
483840
15
15
30
5
30
30
10
30
15
10
15
3
5
3
{3}x{3,3,3}
E8 /A4 A2 A1 = 192*10!/5!/2/2 = 483840
A3 A2 A1
{3}
f2
3
3
2419200
2
4
1
8
6
4
12
4
6
8
1
4
2
{3.3}v{ }
E8 /A3 A2 A1 = 192*10!/4!/3!/2 = 2419200
A3 A3
110
f3
4
6
4
1209600
*
1
4
0
4
6
0
6
4
0
4
1
{3,3}v( )
E8 /A3 A3 = 192*10!/4!/4! = 1209600
A3 A2 A1
4
6
4
*
2419200
0
2
3
1
6
3
3
6
1
3
2
{3}v{ }
E8 /A3 A2 A1 = 192*10!/4!/3!/2 = 2419200
A4 A3
120
f4
5
10
10
5
0
241920
*
*
4
0
0
6
0
0
4
0
{3,3}
E8 /A4 A3 = 192*10!/4!/4! = 241920
D4 A2
111
8
24
32
8
8
*
604800
*
1
3
0
3
3
0
3
1
{3}v( )
E8 /D4 A2 = 192*10!/8/4!/3! = 604800
A4 A1 A1
120
5
10
10
0
5
*
*
1451520
0
2
2
1
4
1
2
2
{ }v{ }
E8 /A4 A1 A1 = 192*10!/5!/2/2 = 1451520
D5 A2
121
f5
16
80
160
80
40
16
10
0
60480
*
*
3
0
0
3
0
{3}
E8 /D5 A2 = 192*10!/16/5!/3! = 40480
D5 A1
16
80
160
40
80
0
10
16
*
181440
*
1
2
0
2
1
{ }v( )
E8 /D5 A1 = 192*10!/16/5!/2 = 181440
A5 A1
130
6
15
20
0
15
0
0
6
*
*
483840
0
2
1
1
2
E8 /A5 A1 = 192*10!/6!/2 = 483840
E6 A1
122
f6
72
720
2160
1080
1080
216
270
216
27
27
0
6720
*
*
2
0
{ }
E8 /E6 A1 = 192*10!/72/6!/2 = 6720
D6
131
32
240
640
160
480
0
60
192
0
12
32
*
30240
*
1
1
E8 /D6 = 192*10!/32/6! = 30240
A6 A1
140
7
21
35
0
35
0
0
21
0
0
7
*
*
69120
0
2
E8 /A6 A1 = 192*10!/7!/2 = 69120
E7
132
f7
576
10080
40320
20160
30240
4032
7560
12096
756
1512
2016
56
126
0
240
*
( )
E8 /E7 = 192*10!/72/8! = 240
D7
141
64
672
2240
560
2240
0
280
1344
0
84
448
0
14
64
*
2160
E8 /D7 = 192*10!/64/7! = 2160
Projections
The projection of 142 to the E8 Coxeter plane (aka. the Petrie projection) with polytope radius
4
2
{\displaystyle 4{\sqrt {2}}}
is shown below with 483,840 edges of length
2
2
{\displaystyle 2{\sqrt {2}}}
culled 53% on the interior to only 226,444:
Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry: u = (1, φ , 0, −1, φ , 0,0,0) v = (φ , 0, 1, φ , 0, −1,0,0) w = (0, 1, φ , 0, −1, φ ,0,0) The 17280 projected 142 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. Notice the last two outer hulls are a combination of two overlapped Dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60).
E8 [30]
E7 [18]
E6 [12]
(1)
(1,3,6)
(8,16,24,32,48,64,96)
[20]
[24]
[6]
(1,2,3,4,5,6,7,8,10,11,12,14,16,18,19,20)
Orthographic projections are shown for the sub-symmetries of E8 : E7 , E6 , B8 , B7 , B6 , B5 , B4 , B3 , B2 , A7 , and A5 Coxeter planes , as well as two more symmetry planes of order 20 and 24. Vertices are shown as circles, colored by their order of overlap in each projective plane.
D3 / B2 / A3 [4]
D4 / B3 / A2 [6]
D5 / B4 [8]
(32,160,192,240,480,512,832,960)
(72,216,432,720,864,1080)
(8,16,24,32,48,64,96)
D6 / B5 / A4 [10]
D7 / B6 [12]
D8 / B7 / A6 [14]
B8 [16/2]
A5 [6]
A7 [8]
1k2 figures in n dimensions
Space
Finite
Euclidean
Hyperbolic
n
3
4
5
6
7
8
9
10
Coxeter group
E3 =A2 A1
E4 =A4
E5 =D5
E6
E7
E8
E9 =
E
~ ~ -->
8
{\displaystyle {\tilde {E}}_{8}}
= E8 +
E10 =
T
¯ ¯ -->
8
{\displaystyle {\bar {T}}_{8}}
= E8 ++
Coxeter diagram
Symmetry (order)
[3−1,2,1 ]
[30,2,1 ]
[31,2,1 ]
[[32,2,1 ]]
[33,2,1 ]
[34,2,1 ]
[35,2,1 ]
[36,2,1 ]
Order
12
120
1,920
103,680
2,903,040
696,729,600
∞
Graph
-
-
Name
1−1,2
102
112
122
132
142
152
162
Rectified 142 polytope
The rectified 142 is named from being a rectification of the 142 polytope, with vertices positioned at the mid-edges of the 142 . It can also be called a 0421 polytope with the ring at the center of 3 branches of length 4, 2, and 1.
Alternate names
0421 polytope
Birectified 241 polytope
Quadrirectified 421 polytope
Rectified diacositetracont-dischiliahectohexaconta-zetton as a rectified 240-2160 facetted polyzetton (acronym buffy ) (Jonathan Bowers)[ 4]
Construction
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram : .
Removing the node on the end of the 1-length branch leaves the birectified 7-simplex ,
Removing the node on the end of the 2-length branch leaves the birectified 7-cube , .
Removing the node on the end of the 3-length branch leaves the rectified 132 , .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 5-cell -triangle duoprism prism, .
Seen in a configuration matrix , the element counts can be derived by mirror removal and ratios of Coxeter group orders.[ 3]
Configuration matrix
E8
k -face
fk
f0
f1
f2
f3
f4
f5
f6
f7
k -figure
A4 A2 A1
( )
f0
483840
30
30
15
60
10
15
60
30
60
5
20
30
60
30
30
10
20
30
30
15
6
10
10
15
6
3
5
2
3
{3,3,3}x{3,3}x{}
A3 A1 A1
{ }
f1
2
7257600
2
1
4
1
2
8
4
6
1
4
8
12
6
4
4
6
12
8
4
1
6
4
8
2
1
4
1
2
A3 A2
{3}
f2
3
3
4838400
*
*
1
1
4
0
0
1
4
4
6
0
0
4
6
6
4
0
0
6
4
4
1
0
4
1
1
A3 A2 A1
3
3
*
2419200
*
0
2
0
4
0
1
0
8
0
6
0
4
0
12
0
4
0
6
0
8
0
1
4
0
2
A2 A2 A1
3
3
*
*
9676800
0
0
2
1
3
0
1
2
6
3
3
1
3
6
6
3
1
3
3
6
2
1
3
1
2
A3 A3
0200
f3
4
6
4
0
0
1209600
*
*
*
*
1
4
0
0
0
0
4
6
0
0
0
0
6
4
0
0
0
4
1
0
0110
6
12
4
4
0
*
1209600
*
*
*
1
0
4
0
0
0
4
0
6
0
0
0
6
0
4
0
0
4
0
1
A3 A2
6
12
4
0
4
*
*
4838400
*
*
0
1
1
3
0
0
1
3
3
3
0
0
3
3
3
1
0
3
1
1
A3 A2 A1
6
12
0
4
4
*
*
*
2419200
*
0
0
2
0
3
0
1
0
6
0
3
0
3
0
6
0
1
3
0
2
A3 A1 A1
0200
4
6
0
0
4
*
*
*
*
7257600
0
0
0
2
1
2
0
1
2
4
2
1
1
2
4
2
1
2
1
2
A4 A3
0210
f4
10
30
20
10
0
5
5
0
0
0
241920
*
*
*
*
*
4
0
0
0
0
0
6
0
0
0
0
4
0
0
A4 A2
10
30
20
0
10
5
0
5
0
0
*
967680
*
*
*
*
1
3
0
0
0
0
3
3
0
0
0
3
1
0
D4 A2
0111
24
96
32
32
32
0
8
8
8
0
*
*
604800
*
*
*
1
0
3
0
0
0
3
0
3
0
0
3
0
1
A4 A1
0210
10
30
10
0
20
0
0
5
0
5
*
*
*
2903040
*
*
0
1
1
2
0
0
1
2
2
1
0
2
1
1
A4 A1 A1
10
30
0
10
20
0
0
0
5
5
*
*
*
*
1451520
*
0
0
2
0
2
0
1
0
4
0
1
2
0
2
A4 A1
0300
5
10
0
0
10
0
0
0
0
5
*
*
*
*
*
2903040
0
0
0
2
1
1
0
1
2
2
1
1
1
2
D5 A2
0211
f5
80
480
320
160
160
80
80
80
40
0
16
16
10
0
0
0
60480
*
*
*
*
*
3
0
0
0
0
3
0
0
{3}
A5 A1
0220
20
90
60
0
60
15
0
30
0
15
0
6
0
6
0
0
*
483840
*
*
*
*
1
2
0
0
0
2
1
0
{ }v()
D5 A1
0211
80
480
160
160
320
0
40
80
80
80
0
0
10
16
16
0
*
*
181440
*
*
*
1
0
2
0
0
2
0
1
A5
0310
15
60
20
0
60
0
0
15
0
30
0
0
0
6
0
6
*
*
*
967680
*
*
0
1
1
1
0
1
1
1
( )v( )v()
A5 A1
15
60
0
20
60
0
0
0
15
30
0
0
0
0
6
6
*
*
*
*
483840
*
0
0
2
0
1
1
0
2
{ }v()
0400
6
15
0
0
20
0
0
0
0
15
0
0
0
0
0
6
*
*
*
*
*
483840
0
0
0
2
1
0
1
2
E6 A1
0221
f6
720
6480
4320
2160
4320
1080
1080
2160
1080
1080
216
432
270
432
216
0
27
72
27
0
0
0
6720
*
*
*
*
2
0
0
{ }
A6
0320
35
210
140
0
210
35
0
105
0
105
0
21
0
42
0
21
0
7
0
7
0
0
*
138240
*
*
*
1
1
0
D6
0311
240
1920
640
640
1920
0
160
480
480
960
0
0
60
192
192
192
0
0
12
32
32
0
*
*
30240
*
*
1
0
1
A6
0410
21
105
35
0
140
0
0
35
0
105
0
0
0
21
0
42
0
0
0
7
0
7
*
*
*
138240
*
0
1
1
A6 A1
21
105
0
35
140
0
0
0
35
105
0
0
0
0
21
42
0
0
0
0
7
7
*
*
*
*
69120
0
0
2
E7
0321
f7
10080
120960
80640
40320
120960
20160
20160
60480
30240
60480
4032
12096
7560
24192
12096
12096
756
4032
1512
4032
2016
0
56
576
126
0
0
240
*
*
( )
A7
0420
56
420
280
0
560
70
0
280
0
420
0
56
0
168
0
168
0
28
0
56
0
28
0
8
0
8
0
*
17280
*
D7
0411
672
6720
2240
2240
8960
0
560
2240
2240
6720
0
0
280
1344
1344
2688
0
0
84
448
448
448
0
0
14
64
64
*
*
2160
Projections
Orthographic projections are shown for the sub-symmetries of B6 , B5 , B4 , B3 , B2 , A7 , and A5 Coxeter planes . Vertices are shown as circles, colored by their order of overlap in each projective plane.
(Planes for E8 : E7 , E6 , B8 , B7 , [24] are not shown for being too large to display.)
D3 / B2 / A3 [4]
D4 / B3 / A2 [6]
D5 / B4 [8]
D6 / B5 / A4 [10]
D7 / B6 [12]
[6]
A5 [6]
A7 [8]
[20]
See also
Notes
^ Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces , Groningen: University of Groningen
^ Klitzing, (o3o3o3x *c3o3o3o3o - bif)
^ a b Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
^ Klitzing, (o3o3o3x *c3o3o3o3o - buffy)
References
H. S. M. Coxeter , Regular Polytopes , 3rd Edition, Dover New York, 1973
Kaleidoscopes: Selected Writings of H.S.M. Coxeter , edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 Kaleidoscopes: Selected Writings of H.S.M. Coxeter | Wiley
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III , [Math. Zeit. 200 (1988) 3-45]
Klitzing, Richard. "8D Uniform polyzetta" . o3o3o3x *c3o3o3o3o - bif, o3o3o3x *c3o3o3o3o - buffy