1957 Norwegian Football Cup
|
Read other articles:
Запрос «Луначарский» перенаправляется сюда; см. также другие значения. В Википедии есть статьи о других людях с такой фамилией, см. Луначарский; Луначарский, Анатолий. Анатолий Васильевич Луначарский Советский народный комиссар просвещения А. В. Луначарский 1-й Народны...
SibayakGunung SibayakTitik tertinggiKetinggian2.212 m (7.257 ft)Masuk dalam daftarRibuKoordinat3°14′52″N 98°30′4″E / 3.24778°N 98.50111°E / 3.24778; 98.50111 GeografiLetakSumatra, IndonesiaGeologiJenis gunungStratovolcanoLetusan terakhir1881 Gunung Sibayak adalah sebuah gunung di Kabupaten Karo, Sumatera Utara. Masyarakat Karo menyebut gunung Sibayak dengan sebutan gunung raja. Gunung Sibayak merupakan gunung berapi dan terakhir meletus tahu...
село Зорівка Країна Україна Область Запорізька область Район Новомиколаївський район Рада Самійлівська сільська рада Основні дані Населення 69 Площа 1,04 км² Густота населення 66,35 осіб/км² Поштовий індекс 70142 Телефонний код +380 6144 Географічні дані Географічні коо...
Опис Гурт Pins виступає на Urban stage фестивалю Бандерштат 2016, 6 серпня. Джерело Власна робота на фестивалі Бандерштат 2016 Час створення 2016.08.6 Автор зображення Тарас Возняк Ліцензія Цей файл було добровільно передано в суспільне надбання його автором — користувачем українськ
Esta é uma cronologia dos Jogos Olímpicos de Verão de 1988 em Seul, Coreia do Sul. O período dos Jogos é entre os dias 17 de setembro e 2 de outubro. Calendário Predefinição:CalendárioSeul1988 17 de setembro Cerimônia de abertura[1] 18 de setembro Ciclismo A equipe da Alemanha Oriental torna-se a primeira equipe a conquistar uma medalha de ouro nos Jogos Olímpicos de Seul após ganhar a prova das equipes contra o relógio masculino.[2][3] 24 de setembro Atletismo Ben Johnson, do Ca...
Denni DelyandriDenni Delyandri ProfileLahir11 Juni 1980 (umur 43)Magelang, Jawa Tengah, IndonesiaKebangsaanIndonesiaAlmamaterUniversitas AndalasPekerjaanPengusahaDikenal atasRaja Oleh-olehSuami/istriSelvi NurliaAnak2 Denni Delyandri, ST. (lahir 11 Juni 1980) adalah seorang pengusaha Indonesia.[1] Kehidupan Denny dijuluki sebagai Raja Oleh-oleh karena ia dan istrinya mempelopori usaha yang memproduksi oleh-oleh makanan khas di berbagai kota di Indonesia. Bermula dari Batam, Denni ...
Fernsehserie Titel Sesamstraße Originaltitel Sesame Street Produktionsland USA, Deutschland Originalsprache Englisch Genre Kinderprogramm Länge 25 Minuten Episoden 2853 + 4 Specials Idee Joan Ganz Cooney (°1929) Lloyd Morrisett (1929-2023) Musik Toots Thielemans u. a. Erstausstrahlung 10. Nov. 1969 auf National Education Television (jetzt: Public Broadcasting Service) DeutschsprachigeErstausstrahlung 8. Jan. 1973 auf Deutsches Fernsehen Sesamstraße ist eine der erfolgr...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) كيش العليا کيش بزنويد - قرية - تقسيم إداري البلد إيران المحافظة لرستان المقاطعة أليغودرز ال
Polish-born German sculptor (1929–2020) Waldemar Otto (30 March 1929 – 8 May 2020) was a Polish-born German sculptor, known for his torso studies. History Waldemar Otto, 2013 Torso vor Raster at Trier University Otto was born in Petrikau, Poland, a son of Heinrich Otto and Theodora Otto née Koschelik. He was educated at the Berlin University of the Arts (Hochschule der Künste) in Berlin.[1] In 1948 he enrolled at the Academy of Fine Arts in Berlin, and in 1957 he was a prizewinn...
British politician Fison in 1895. Sir Frederick William Fison, 1st Baronet (4 December 1847 – 20 December 1927)[1] was an English mill-owner and Conservative politician who sat in the House of Commons from 1895 to 1906. Fison was born at Bradford, the son of William Fison a manufacturer and his wife Fanny Whitaker. He was educated at Rugby School and Christ Church, Oxford. He was a spinner and manufacturer and became a Justice of the Peace (J.P.) and Deputy Lieutenant.[2] At...
هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يونيو 2019) لارس ماتسون معلومات شخصية الميلاد 17 يناير 1932 (91 سنة) مالمبيريت مواطنة السويد الحياة العملية المهنة متزلج جبال الرياضة التزلج على المنحدرات الثل...
Yahoo! Japan CorporationKantor pusat Yahoo! Japan di Tokyo Garden Terrace KioichoNama asliJepangヤフー株式会社HepburnYafū! kabushiki gaisha JenisKK PublikDidirikan11 Januari 1996; 27 tahun lalu (1996-01-11)KantorpusatKioi Tower, Tokyo Garden Terrace Kioicho, 1-3, Kioi-cho, Chiyoda-ku, Tokyo, JapanCabang2 (Nagoya dan Osaka)TokohkunciMasayoshi Son (Ketua)Manabu Miyasaka (Presiden dan CEO)Pendapatan¥292,423 juta (FY 2010)Laba operasi¥159,604 juta (FY 2010)Laba bersih¥92,174 juta ...
Indian professional golfer In this Indian name, the name Ashok is a patronymic, and the person should be referred to by the given name, Aditi. Aditi AshokAditi at the 2015 Qatar Ladies OpenPersonal informationBorn (1998-03-29) 29 March 1998 (age 25)Bangalore, Karnataka, IndiaHeight1.73 m (5 ft 8 in)Sporting nationality IndiaResidenceBangalore, Karnataka, IndiaCareerTurned professional2016Current tour(s)Ladies European TourLPGA TourProfessional wins7Number of wins by t...
Japanese manga series Astral ProjectNorth American cover the first manga volume of Astral Project月の光(Tsuki No Hikari)GenreMystery, supernatural[1] MangaWritten byMarginalIllustrated bySyuji TakeyaPublished byEnterbrainEnglish publisherNA: CMX MangaMagazineComic BeamDemographicSeinenOriginal run2005 – 2007Volumes4[1] Astral Project (Japanese: 月の光, Hepburn: Tsuki No Hikari) is a Japanese manga series written by Marginal and illustrated by Takeya Syuj...
Teenie Two Role Sport aircraftType of aircraft National origin United States Manufacturer Homebuilt Designer Calvin Y. Parker First flight 1969 The Parker Teenie Two is a single-seat, single-engine sport aircraft first built in the United States in 1969 and marketed for homebuilding.[1][2][3] It is a low-wing, cantilever monoplane of conventional configuration and fixed tricycle undercarriage.[2][3] The cockpit was designed to be left open, but plans fo...
Unit of the New Hampshire Air National Guard This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (April 2020) (Learn how and when to remove this template message) 157th Air Refueling WingThe first Boeing KC-46A Pegasus to be stationed at Pease arriving on 8 August 2019Active14 April 1956–presentCountry United StatesAllegiance New HampshireBranch ...
Series of Express day train in India Not to be confused with Shatabdi Express. Jan Shatabdi ExpressJan Shatabdi Express at Madgaon.OverviewStatusOperatingFirst service16 April 2002; 21 years ago (2002-04-16)Current operator(s)Indian RailwaysWebsitehttp://indianrail.gov.inOn-board servicesClass(es)Executive Class, AC Chair Car, 2nd Class seatingSeating arrangementsYesSleeping arrangementsNoEntertainment facilitiesElectric outletsBaggage facilitiesOverhead racksTechnicalRollin...
Ma BuqingMa Buqing sitting down on the right with his brother Ma Bufang on the leftReclamation Commissioner Qinghai ProvinceIn office1942–1943 Personal detailsBorn1901Linxia County, GansuDied9 February 1977(1977-02-09) (aged 75–76)Taipei, TaiwanNationalityHuiPolitical partyKuomintangChildrenMa Xuyuan, Ma WeiguoMilitary serviceAllegiance ChinaYears of service1928–1949RankgeneralCommandsReclamation Commissioner Qinghai Province, Deputy Commander in Chief 40th Army GroupBatt...
Full musical score showing each part on a separate line or staff For other uses, see Sheet music (disambiguation). Not to be confused with Book music. This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Sheet music – news · newspapers · books · scholar · JSTOR (July 2010) (Learn how and when to remove this templ...
In matematica, e in particolare in teoria dei numeri, il teorema di Eulero (detto anche teorema di Fermat-Eulero) afferma che se n {\displaystyle n} è un intero positivo ed a {\displaystyle a} è coprimo rispetto ad n {\displaystyle n} , allora: a ϕ ( n ) ≡ 1 mod n {\displaystyle a^{\phi (n)}\equiv 1{\bmod {n}}} dove ϕ ( n ) {\displaystyle \phi (n)} indica la funzione phi di Eulero e ≡ {\displaystyle \equiv } la relazione di congruenza modulo n {\displaystyle n} ....