The asteroid has a bi-lobed shape, as evidenced by adaptive optics images, the first of which were taken in December 2003 with the Keck telescope.[6] Of several proposed shape models that agreed with the images, a "snowman"-like shape was found to best fit the observed precession rate of Hermione's satellite.[7] In this "snowman" model, the asteroid's shape can be approximated by two partially overlapping spheres of radii 80 and 60 km, whose centers are separated by a distance of 115 km. A simple ellipsoid shape was ruled out.
Observation of the satellite's orbit has made possible an accurate determination of Hermione's mass.[7] For the best-fit "snowman" model, the density is found to be 1.8 ± 0.2 g/cm3, giving a porosity on the order of 20%, and possibly indicating that the main components are fractured solid bodies, rather than the asteroid being a rubble pile.
Occultations by Hermione have been successfully observed three times so far, the last time in February 2004.
A satellite of Hermione was discovered in 2002 with the Keck II telescope.[11] It is about 8 miles (13 km) in diameter.[11] The satellite is provisionally designated S/2002 (121) 1. It has not yet been officially named, but "LaFayette" has been proposed by a group of astronomers in reference to the frigate used in secret by the Marquis de Lafayette to reach America to help the insurgents.[14][6]
Notes
^Using the "snowman" shape model, which best matches the value of J2 implied from precession.