فمن أجل حساب قيم الحفز الثلاثي من قيم الانعكاس المقاسة، سنحتاج إلى توزيع طاقةالمنبع الضوئي المستخدم في مضاهاة لون العينات. إذا استخدمت قيم حفز ثلاثية لتحديد لون ما، فيجب استخدام مجموعة قيم معيارية للتوزيع الطيفي، فمجموعة القيم المختلفة للتوزيع الطيفي ستعطي قيم حفز ثلاثية مختلفة لنفس العينة.[1]
إذا أردنا أن نتأكد من صحة لون عينة ما، فمن الأفضل اختبارها باستخدام شكل واحد من ضوء النهار (حيث يختلف ضوء النهار من منطقة إلى أخرى على الكرة الأرضية)، ومن ضوء التنغستن، ومن الأنبوب اللصفي (Fluorescent tube). وقد ميزت هيئة الإضاءة الدولية بين المنبع الضوئي والمضياء. فالمنبع الضوئي هو مصدر فيزيائي للضوء، مثل الشمس والمصابيح، بينما يشير مصطلح مضياء إلى توزيع قدرة طيفية خاص. وبالتالي يمكن توصيف المضياء مسبقًا، ولكن قد لا يمكننا تصنيعه عمليًا.[1]
إن أي عينة ذات لون مرض عند النظر إليها تحت أي من هذه الأضواء الثلاثة ستكون مرضية غالبا إذا نظر إليها تحت أي نوع آخر من المنابع الضوئية. ومن أجل توحيد المعايير يجب استخدام أقل عدد من المضياء. وفي عام 1931 أصبحت الأنابيب اللصفية غير مهمة، وحددت هيئة الإضاءة الدولية ثلاثة مضياء معيارية كالآتي:[1]
حددت هيئة الإضاءة الدولية المضياء المعياري A بثلاث أمور:
«المضياء المعياري A معد ليمثل ضوء المصباح المثالي المنزلي ذا شعيرة التنغستن. وتوزيع القدرة الطيفية النسبي لهذا الضوء هو مشع بلانكي (مشع مثالي) عند درجة حرارة 2856 كلفن تقريبا. يجب أن يستعمل المضياء المعياري A في جميع القياسات اللونية التي تتضمن استخدام الضوء المتوهج، مالم يكن هناك أسباب موضوعية لاستخدام مضياء مختلف» – CIE، المضيئات المعيارية لهيئة الإضاءة الدولية المستخدمة في القياس اللوني
المضيئات المعيارية B و C لهيئة الإضاءة الدولية
تحاكي المضيئات B و C ضوء النهار. وهي مشتقة من المضياء A باستخدام مرشح مائع. يمثل المضياء B ضوء الشمس عند الظهيرة، وهو ذو درجة حرارة لونية مترابطة حوالي 4874 كلفن، في حين أن المضياء C يمثل متوسط ضوء النهار بدرجة حرارة لونية مترابطة حوالي 6774 كلفن. وهذه المضيئات رديئة وبعيدة نوعا ما عم المنابع الضوئية المعروفة مما انقص من قيمتها مقارنة للمضيئات D.[2]
«المضياء C ليس معيارا من معايير هيئة الإضاءة الدولية ولكن توزيع القدرة الطيفية النسبية، وقيم الحفز الثلاثي والإحداثيات اللونية لهذا المعيار معطاة في الجدول T.1 والجدول T.3 لأن العديد من الحسابات وأجهزة القياس العملية ما زالت تستخدم هذا المضياء» – CIE، منشورات 2004[3]
مجموعة المضيئات D
ابتكرت مجموعة المضيئات D من أجل تمثيل ضوء النهار الطبيعي.[4] من الصعب إنتاج منبع ضوئي يحاكي هذا المضياء، ولكن من السهل توصيفه رياضيا.
^ ابجدMcDonald، Roderick (1997)، Colour Physics for Industry (ط. Second Edition)، Society of Dyers and Colourists، ص. 99، ISBN:0 901956 70 8{{استشهاد}}: |طبعة= يحتوي على نص زائد (مساعدة)
^Henderson, Stanley Thomas (1963). "The spectral energy distribution of daylight". British Journal of Applied Physics. ج. 14 ع. 3: 125–131. DOI:10.1088/0508-3443/14/3/307. {{استشهاد بدورية محكمة}}: الوسيط |تاريخ الوصول بحاجة لـ |مسار= (مساعدة) والوسيط author-name-list parameters تكرر أكثر من مرة (مساعدة)
^Henderson, Stanley Thomas (1964). "The spectral energy distribution of daylight". British Journal of Applied Physics. ج. 15 ع. 8: 947–952. DOI:10.1088/0508-3443/15/8/310. {{استشهاد بدورية محكمة}}: الوسيط |تاريخ الوصول بحاجة لـ |مسار= (مساعدة) والوسيط author-name-list parameters تكرر أكثر من مرة (مساعدة)