Singularitas gravitasional

Animasi simulasi lensa gravitasi disebabkan oleh sebuah lubang hitam Schwarzschild melewati planar garis pandang ke latar belakang galaksi. Pada sekeliling dan saat penyelarasan yang tepat (syzygy) lensa ekstrim dari cahaya teramati

Singularitas gravitasi, singularitas ruang waktu atau singularitas adalah lokasi di ruang waktu di mana bidang gravitasi benda langit diprediksi akan menjadi tak hingga oleh relativitas umum dengan cara yang tidak bergantung pada sistem koordinat. Kuantitas yang digunakan untuk mengukur kekuatan medan gravitasi adalah invarian skalar kelengkungan ruangwaktu, yang mencakup ukuran kerapatan materi. Karena jumlah seperti itu menjadi tak terbatas dalam singularitas, hukum ruangwaktu normal yang ada tidak bisa digunakan.[1][2]

Singularitas gravitasi dipertimbangkan di dalam relativitas umum, dimana kepadatan tampak menjadi tak terbatas di pusat lubang hitam, dan di dalam astrofisika dan kosmologi sebagai keadaan paling awal dari alam semesta selama Big Bang. Fisikawan tidak yakin apakah prediksi singularitas berarti bahwa mereka benar-benar ada (atau ada pada awal Big Bang), atau bahwa pengetahuan saat ini tidak cukup untuk menggambarkan apa yang terjadi pada kepadatan ekstrim seperti itu.

Relativitas umum memprediksi bahwa objek apa pun yang tersedot di luar titik tertentu (untuk bintang-bintang ini adalah jari-jari Schwarzschild) akan membentuk lubang hitam, di dalamnya singularitas (ditutupi oleh horizon peristiwa) akan terbentuk.[3] Teorema singularitas Penrose-Hawking mendefinisikan singularitas milik geodesik tidak dapat diperpanjang dalam cara halus.[4] Akhir geodesik semacam itu dianggap singularitas.

Keadaan awal alam semesta, pada awal Ledakan Besar, juga diprediksi oleh teori-teori modern sebagai singularitas.[5] Dalam hal ini alam semesta tidak runtuh ke dalam lubang hitam, karena perhitungan yang diketahui saat ini dan batas kerapatan untuk keruntuhan gravitasi biasanya didasarkan pada objek dengan ukuran yang relatif konstan, seperti bintang, dan tidak selalu berlaku di cara yang sama untuk ruang yang berkembang pesat seperti Big Bang. Baik relativitas umum maupun mekanika kuantum saat ini dapat menggambarkan momen paling awal dari Big Bang,[6] tetapi secara umum, mekanika kuantum tidak memungkinkan partikel untuk menghuni ruang yang lebih kecil dari panjang gelombang mereka.[7]

Interpretasi

Banyak teori dalam fisika memiliki singularitas matematika dari satu jenis atau lainnya. Persamaan untuk teori-teori fisik ini meramalkan bahwa bola massa dari jumlah tertentu menjadi tak terbatas atau bertambah tanpa batas. Ini umumnya merupakan tanda untuk bagian yang hilang dalam teori, seperti dalam bencana ultraviolet, re-normalisasi, dan ketidakstabilan atom hidrogen yang diprediksi oleh rumus Larmor.

Beberapa teori, seperti teori gravitasi kuantum simpal, menyatakan bahwa singularitas mungkin tidak ada.[8] Ini juga berlaku untuk teori-teori medan klasik terpadu seperti persamaan Einstein-Maxwell-Dirac. Idenya dapat dinyatakan dalam bentuk efek gravitasi kuantum, ada jarak minimum di luar gaya gravitasi yang tidak terus meningkat sebagai jarak antara massa yang menjadi lebih pendek, atau sebagai alternatif gelombang partikel yang menembus efek pelindung gravitasi yang akan terasa dikejauhan.

Tipe

Ada berbagai jenis singularitas, masing-masing dengan fitur fisik yang berbeda yang memiliki karakteristik yang relevan dengan teori darimana mereka awalnya muncul, seperti bentuk yang berbeda dari singularitas, mengerucut dan melengkung. Mereka juga telah dihipotesiskan untuk terjadi tanpa horizon peristiwa, struktur yang menggambarkan satu bagian ruangwaktu dari yang lain di mana peristiwa tidak dapat memengaruhi saat melewati horizon; ini disebut terbuka.

Mengerucut

Singularitas kerucut terjadi ketika ada titik dimana batas setiap Invarian Difeomorfisme memiliki kuantitas terbatas, dalam hal ini ruangwaktu tidak mulus pada batas titik itu sendiri. Dengan demikian, ruangwaktu tampak seperti kerucut di sekitar titik ini, dimana singularitas terletak di ujung kerucut. Metrik dapat terbatas dimanapun ketika sistem koordinat digunakan.

Contoh singularitas berbentuk kerucut adalah dawai kosmik dan Schwarzschild.[9]

Melengkung

Ilustrasi sederhana lubang hitam yang tidak berputar dan singularitasnya

Solusi untuk persamaan relativitas umum atau teori gravitasi lain (seperti gravitasi super) sering menghasilkan titik temu di mana metrik meledak menjadi tak hingga. Namun, banyak dari titik-titik ini sepenuhnya reguler, dan infinitas hanyalah hasil dari penggunaan sistem koordinat yang tidak sesuai pada titik ini. Untuk menguji apakah ada singularitas pada titik tertentu, seseorang harus memeriksa apakah jumlah pada titik ini invarian difeomorfisme (misalnya skalar) menjadi tidak terbatas. Kuantitas seperti itu sama di setiap sistem koordinat, jadi infinitas ini tidak akan hilang dengan perubahan koordinat.

Contohnya adalah solusi Schwarzschild yang menjelaskan lubang hitam kosong yang tidak berputar., bagian dari metrik menjadi tak terbatas di horizon peristiwa. Namun, ruangwaktu di horizon peristiwa adalah reguler. Keteraturan menjadi jelas ketika mengubah ke sistem koordinat lain (seperti Koordinat Kruskal), di mana metrik halusnya sempurna. Disisi lain, di tengah lubang hitam, dimana metrik menjadi tak terbatas juga, solusi menyarankan singularitas ada. Keberadaan singularitas dapat dibuktikan dengan mencatat Skalar Kretschmann, menjadi kuadrat dari tensor Riemann yaitu., difeomorfisme yang berbeda-beda menjadi tidak terbatas.

Sementara dalam lubang hitam yang tidak berputar, singularitas terjadi pada satu titik dalam koordinat model, yang disebut "titik singularitas", dalam lubang hitam yang berputar, juga dikenal sebagai lubang hitam Kerr, singularitas terjadi pada cincin (garis melingkar), dikenal sebagai "Cincin singularitas". Singularitas semacam itu juga secara teoritis dapat menjadi lubang cacing.[10]

Secara umum, ruangwaktu dianggap singular jika tidak lengkap, yang berarti bahwa ada partikel yang jatuh bebas gerakannya tidak dapat ditentukan di luar waktu yang terbatas, setelah titik mencapai singularitas. Misalnya, setiap pengamat di dalam horizon peristiwa dari lubang hitam yang tidak berputar akan jatuh ke tengahnya dalam periode waktu yang terbatas. Versi klasik model Big Bang kosmologis dari alam semesta yang berisi singularitas kausal pada waktu awal (t = 0), dimana semua geodesik seperti waktu tidak memiliki ekstensi ke masa lalu. Ekstrapolasi mundur ke hipotetis waktu 0 yang menghasilkan alam semesta dengan semua dimensi spasial berukuran nol, kepadatan tak terbatas, suhu tak terbatas, dan kelengkungan ruangwaktu tak terbatas.

Singularitas terbuka

Sampai awal 1990-an, secara luas diyakini bahwa relativitas umum menyembunyikan setiap singularitas di belakang horizon peristiwa, membuat singularitas terbuka menjadi mustahil. Ini disebut sebagai hipotesis sensor kosmik. Namun, pada tahun 1991, fisikawan Stuart Shapiro dan Saul Teukolsky melakukan simulasi komputer dari bagian debu yang berputar yang menunjukkan bahwa relativitas umum memungkinkan singularitas "terbuka". Seperti apa sebenarnya benda-benda ini dalam model tersebut tidak diketahui. Juga tidak diketahui apakah singularitas akan tetap muncul jika asumsi penyederhanaan yang digunakan untuk membuat simulasi dihapus. Namun, dihipotesiskan bahwa cahaya yang memasuki singularitas juga akan menghentikan geodesiknya, sehingga singularitas terbuka terlihat seperti lubang hitam.[11][12][13]

Horison peristiwa yang menghilang ada di Metrik Kerr, yang merupakan lubang hitam berputar dalam ruang hampa udara, jika momentum angular () cukup tinggi. Mengubah metrik Kerr ke Koordinat Boyer–Lindquist, itu dapat ditampilkan [14]  bahwa    mengoordinasikan (yang bukan radius) dari horizon peristiwa adalah,, dimana , dan . Dalam hal ini, "horizon peristiwa menghilang" berarti ketika solusi kompleks untuk , atau . Namun, ini sesuai dengan kasus dimana melampaui (atau dalam satuan Planck, ), yaitu melebihi apa yang biasanya dipandang sebagai batas atas dari nilai-nilai yang mungkin secara fisik.

Demikian pula, horizon peristiwa yang hilang juga dapat dilihat Reissner–Nordström  geometri dari lubang hitam yang terisi jika muatan () cukup tinggi. Dalam metrik ini, itu dapat ditampilkan[15] bahwa singularitas terjadi pada, dimana , dan . Dari tiga kemungkinan kasus untuk nilai relatif dari  dan , kasus dimana  menyebabkan keduanya  menjadi kompleks. Ini berarti metrik teratur untuk semua nilai positif dari , atau dengan kata lain, singularitas tidak memiliki horizon peristiwa. Namun, ini sesuai dengan kasus dimana melebihi (atau dalam satuan Planck, ), yaitu melebihi apa yang biasanya dipandang sebagai batas atas dari nilai-nilai yang mungkin secara fisik. Lubang hitam astrofisika yang sebenarnya juga tidak diharapkan memiliki muatan yang cukup besar.

Lihat pula

Catatan

  1. ^ "Blackholes and Wormholes". 
  2. ^ Claes Uggla (2006). "Spacetime Singularities". Einstein Online. 2 (1002). Diarsipkan dari versi asli tanggal 2017-01-24. Diakses tanggal 2019-04-08. 
  3. ^ Curiel, Erik & Peter Bokulich. "Singularities and Black Holes". Stanford Encyclopedia of Philosophy. Center for the Study of Language and Information, Stanford University. Diakses tanggal 26 Desember 2012. 
  4. ^ Moulay, Emmanuel. "The universe and photons" (PDF). FQXi Foundational Questions Institute. Diakses tanggal 26 Desember 2012. 
  5. ^ Wald, p.99
  6. ^ Hawking, Stephen. "The Beginning of Time". Stephen Hawking: The Official Website. Cambridge University. Diarsipkan dari versi asli tanggal 2014-10-06. Diakses tanggal 26 Desember 2012. 
  7. ^ Zebrowski, Ernest (2000). A History of the Circle: Mathematical Reasoning and the Physical Universe. Piscataway NJ: Rutgers University Press. hlm. 180. ISBN 978-0813528984. 
  8. ^ Rodolfo Gambini; Javier Olmedo; Jorge Pullin (2013). "Quantum black holes in Loop Quantum Gravity". Classical and Quantum Gravity. 31 (9): 095009. arXiv:1310.5996alt=Dapat diakses gratis. Bibcode:2014CQGra..31i5009G. doi:10.1088/0264-9381/31/9/095009. 
  9. ^ Copeland, Edmund J; Myers, Robert C; Polchinski, Joseph (2004). "Cosmic F- and D-strings". Journal of High Energy Physics. 2004 (6): 013. arXiv:hep-th/0312067alt=Dapat diakses gratis. Bibcode:2004JHEP...06..013C. doi:10.1088/1126-6708/2004/06/013. 
  10. ^ Jika singularitas berputar diberi muatan listrik yang seragam, maka akan terjadi gaya tolak menolak, menyebabkan cincin singularitas terbentuk. Efeknya mungkin adalah lubang cacing yang stabil, tusukan non-point-like dalam ruangwaktu yang mungkin terhubung ke cincin singularitas kedua di ujung lainnya. Meskipun lubang cacing seperti itu sering disarankan sebagai rute untuk perjalanan yang lebih cepat dari cahaya, saran semacam itu mengabaikan masalah untuk melarikan diri dari lubang hitam di ujung yang lain, atau bahkan bertahan dari gaya pasang yang sangat besar di bagian dalam lubang cacing yang sangat dalam.
  11. ^ M. Bojowald (2008). "Loop Quantum Cosmology". Living Reviews in Relativity. 11 (4). Bibcode:2008LRR....11....4B. doi:10.12942/lrr-2008-4. PMC 5253914alt=Dapat diakses gratis. Diarsipkan dari versi asli tanggal 2015-12-21. 
  12. ^ R. Goswami; P. Joshi (2008). "Spherical gravitational collapse in N-dimensions". Physical Review D. 76 (8): 084026. arXiv:gr-qc/0608136alt=Dapat diakses gratis. Bibcode:2007PhRvD..76h4026G. doi:10.1103/PhysRevD.76.084026. 
  13. ^ R. Goswami; P. Joshi; P. Singh (2006). "Quantum evaporation of a naked singularity". Physical Review Letters. 96 (3): 031302. arXiv:gr-qc/0506129alt=Dapat diakses gratis. Bibcode:2006PhRvL..96c1302G. doi:10.1103/PhysRevLett.96.031302. PMID 16486681. 
  14. ^ Hobson, et al., General Relativity an Introduction for Physicists, Cambridge University Press 2007, p. 300-305
  15. ^ Hobson, et al., General Relativity an Introduction for Physicists, Cambridge University Press 2007, p. 320-325

Referensi

Bacaan Lanjutan

  • The Elegant Universe oleh Brian Greene. Buku ini memberikan pengantar awam pada teori dawai, meskipun beberapa pandangan yang diungkapkan sudah menjadi usang. Penggunaan istilah umum dan pemberian contoh di seluruh teks membantu orang awam memahami dasar-dasar teori dawai.

Read other articles:

Japanese baseball player Baseball player Nobutaka ImamuraImamura with the Yomiuri GiantsYomiuri Giants – No. 26PitcherBorn: (1994-03-15) March 15, 1994 (age 29)Shijōnawate, Osaka, JapanBats: LeftThrows: LeftdebutSeptember 16, 2013, for the Yomiuri GiantsCareer statistics (through April 6, 2022)Win–loss record23-18Earned run average4.05Strikeouts324 Teams Yomiuri Giants (2012–present) Nobutaka Imamura (今村 信貴, Imamura Nobutaka, born March 2, 1994 in Shijōnawa...

 

يُعتبر الإجهاض في بولندا إجراءً غير قانوني إلا في حالات الاغتصاب، أو عند تعرض حياة المرأة أو صحتها لأي شكل من أشكال الخطر، أو في حال إصابة الجنين بأضرار لا يُمكن معالجتها.[1][2] اقتُرح تشريع يحظر الإجهاض بشكل كامل في عام 2016م، فنظّمت 30,000 امرأة إضرابًا وسرن في جميع المد...

 

Frontansicht der Basilika Chor der Basilika Die Stiftskirche St. Vitus und Deocar ist eine von Papst Benedikt XVI. am 14. Juli 2010 zur Basilica minor erhobene Kirche in Herrieden, Bezirk Mittelfranken, Bayern. Sie ist neben der Franziskanerbasilika in Ingolstadt und der Wallfahrtsbasilika in Wemding eine von drei Basilicae minores des Bistums Eichstätt und die einzige in Mittelfranken. Inhaltsverzeichnis 1 Baugeschichte 2 Raumwirkung 3 Ausstattung 4 Orgel 5 Geläut 6 Literatur 7 Weblinks 8 ...

Hyundai Nombre completo Hyundai World Rally TeamNacionalidad SurcoreanaBase Alzenau, AlemaniaDirector/es Cyril Abiteboul[1]​Ingeniero jefe François-Xavier Demaison[2]​ (Director Técnico) Christian Loriaux(Director del Programa WRC)WRC 2023Pilotos Thierry Neuville Esapekka Lappi Dani Sordo Craig BreenCopilotos Martijn Wydaeghe Janne Ferm Cándido Carrera James FultonDebut Rally de Suecia de 2000Carreras 164Podios 107Victorias 26Campeonatos de Escuderías 2 (2019, 2020)Campeonatos...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (أكتوبر 2022) تمثال سان خوان نيبوموسينو سانتو الصغير لفيليبي دي لا إيسبادا ، المولود في سان جيرمان ، بورتوريكو كاليفورنيا. 1754 بورتوريكو هي إقليم تابع للولايات المتحدة. ا...

 

Ajang Kelicung Diospyros macrophylla Pohon Ajan Kelicung, di sebuah taman di Lombok, Nusa Tenggara Barat.TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladasteridsOrdoEricalesFamiliEbenaceaeGenusDiospyrosSpesiesDiospyros macrophylla Blume Tata namaSinonim takson Diospyros cystopus Miq. Diospyros pachycalyx Merr. Diospyros cystopus Miq. Diospyros suluensis Merr. Sumber: AsianPlant[1]lbs Ajang kelicung (Diospyros macroph...

2025 FIVB Men's World ChampionshipTournament detailsHost nationTBDDatesTBATeams32 (from 5 confederations)← PreviousNext → The 2025 FIVB Volleyball Men's World Championship will be the 21st staging of the FIVB Volleyball Men's World Championship, contested by the senior men's national teams of the members of the Fédération Internationale de Volleyball (FIVB). Starting this staging, the World Championship will be expanded to include 32 teams, increasing from 24 teams.[1] The ...

 

German newspaper You can help expand this article with text translated from the corresponding article in German. (July 2020) Click [show] for important translation instructions. View a machine-translated version of the German article. Machine translation, like DeepL or Google Translate, is a useful starting point for translations, but translators must revise errors as necessary and confirm that the translation is accurate, rather than simply copy-pasting machine-translated text into the ...

 

هذه المقالة يتيمة إذ تصل إليها مقالات أخرى قليلة جدًا. فضلًا، ساعد بإضافة وصلة إليها في مقالات متعلقة بها. (يناير 2022) سياحة الاستجمام أو سياحة الاستشفاء؛ هي السفر لغرض تعزيز الصحة والترفيه من خلال ِلأنشطة البدنية والنفسية والروحية.[1] سوق في إطار اقتصاد المنتجعات الصحية...

1997 Japanese anime television film part of the Dragon Ball franchise This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: Dragon Ball GT: A Hero's Legacy – news · newspapers · books · scholar · JSTOR (September 2017) (Learn how and when to remove this template message) Dragon Ball GT the Movie: A Hero's LegacyCo...

 

1980 novel by James A. Michener For other uses, see Covenant (disambiguation). The Covenant First edition coverAuthorJames A. MichenerCountryUnited StatesLanguageEnglishGenreHistorical novelPublisherRandom HousePublication date1980Media typePrint (hardback)Pages879 ppISBN0-394-50505-0 The Covenant is a historical novel by American author James A. Michener, published in 1980.[1] Overview The novel is set in South Africa, home to five distinct populations: Bantu (native Black tribe...

 

Formula One Grand Prix This article is about the Formula One race. For other uses, see Pacific Grand Prix (disambiguation). Pacific Grand PrixLaguna Seca Raceway (1960–1963)TI Circuit (1994–1995)Race informationNumber of times held6First held1960Last held1995Most wins (drivers) Michael Schumacher (2) Stirling Moss (2)Most wins (constructors) Benetton (2) Lotus (2)Circuit length3.703 km (2.300 miles)Race length307.349 km (192.093 miles)Laps83Last race (1995)Pole positio...

American Old West lawman For the American psychiatrist, see James F. Masterson. For the Irish recipient of the Victoria Cross, see James Edward Ignatius Masterson. This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects ...

 

2019 Indian filmMoothon (The Elder one )Theatrical release posterDirected byGeetu MohandasWritten byGeetu Mohandas Anurag Kashyap (Hindi dialogues)Produced byAnurag KashyapS. Vinod KumarAjay G. RaiAlan McAlexStarringNivin Pauly Shashank AroraSanjana Dipu Sobhita DhulipalaMelissa Raju ThomasRoshan MathewCinematographyRajeev RaviEdited byB. AjithkumarKiran DasMusic bySagar DesaiProductioncompaniesJAR PicturesGood Bad FilmsMini StudioDistributed byMini StudioRelease dates September 2019...

 

1969 novel by Romain Gary This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: The Ski Bum – news · newspapers · books · scholar · JSTOR (May 2014) (Learn how and when to remove this template message) The Ski Bum First editionAuthorRomain GaryCountryFranceLanguageEnglishPublisherHarper & RowPublication date19...

Medieval and post-medieval English financial documents Pipe rollsExtract from the 1194 Pipe rollLanguageMedieval Latin, Middle English, EnglishDate1130–1833ProvenanceEnglish ExchequerExchequer of IrelandSeriesPipe rollsGenreAccounting documentsSubjectRecords of the audits of the English Exchequer and Exchequer of IrelandPeriod covered1130–1833 The Pipe rolls, sometimes called the Great rolls[1] or the Great Rolls of the Pipe, are a collection of financial records maintained by the...

 

Praça Dira, em Riade, onde pessoas são regularmente decapitadas e têm membros amputados.[1][2][3] A Arábia Saudita tem sido muito criticada por seu histórico de desrespeito aos direitos humanos. As questões que têm atraído fortes críticas incluem a posição extremamente desvantajosa das mulheres dentro da sociedade saudita, a discriminação religiosa e a falta de liberdade religiosa e política. Entre 1996 e 2000, a Arábia Saudita aderiu a quatro convenções da Organização das ...

 

Imre dari HungariaRaja Hungaria dan KroasiaBerkuasa1196–1204Penobatan16 Mei 1182PendahuluBéla IIIPenerusLászló IIIInformasi pribadiKelahiran1174Kematian30 November 1204 – 1174; umur -31–-30 tahunPemakamanEgerDynastyWangsa ÁrpádAyahBéla III dari HungariaIbuAnna ChâtillonPasanganGonstanza dari AragonAnakLászló III dari HungariaAgamaKatolik Roma Imre, juga dikenal sebagai Henry atau Emerik (bahasa Hungaria: Imre, bahasa Kroasia: Emerik, bahasa Slowakia: Im...

Lutheran university in Irvine, California, US Concordia University IrvineFormer nameChrist College Irvine (1976–1993)MottoDeveloping Wise, Honorable, and Cultivated Citizens.TypePrivateEstablished1976Religious affiliationLutheran Church–Missouri SynodEndowment$46 millionPresidentMichael ThomasProvostScott AshmonStudents4,046[1]Undergraduates1,592[1]Postgraduates2,454LocationIrvine, California, United StatesCampusSuburbanColorsGreen and gold[2]   Spor...

 

У этого термина существуют и другие значения, см. Ижора (значения). Ижора Современное самоназвание ижора, русские, финны[1] Численность и ареал Всего: от 500 до 1300 чел.  Россия: 210 (перепись 2021)[2], 266 (перепись 2010)[3], 327 (перепись 2002)[4][5]  Ленинградская обла...

 

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!