Gasiba Bulukumba U-15
|
Read other articles:
Туре Эрьясетернорв. Tore Ørjasæter Дата рождения 3 марта 1886(1886-03-03)[1][2] Место рождения Шок, Оппланн, Норвегия Дата смерти 29 февраля 1968(1968-02-29)[1][3][…] (81 год) Место смерти Шок, Оппланн, Норвегия Гражданство (подданство) Норвегия Род деятельности писатель, поэт Я...
JKT48 adalah grup idola asal Indonesia. Dibentuk pada tahun 2011, JKT48 merupakan grup saudari AKB48 pertama yang berada di luar Jepang.[1] Grup ini mengadopsi konsep AKB48 yaitu idola yang dapat anda jumpai setiap hari.[2] JKT48 mengadakan pertunjukan di Theater JKT48, lantai 4 mal fX Sudirman, Jakarta. Per tanggal 3 September 2023, JKT48 memiliki 41 orang anggota secara individu. Grup terbagi dalam 11 generasi. Sebelas generasi tersebut masing-masing meliputi generasi pertam...
メディア (媒体) > 記録媒体 この記事には複数の問題があります。改善やノートページでの議論にご協力ください。 出典がまったく示されていないか不十分です。内容に関する文献や情報源が必要です。(2022年1月) 独自研究が含まれているおそれがあります。(2009年11月)出典検索?: 記録媒体 – ニュース · 書籍 · スカラー · CiNii · J-S...
Cet article est une ébauche concernant une chanson. Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants. Bleeding Love Leona Lewis interprétant Bleeding Love durant le concert de Labyrinth Tour. Single de Leona Lewisextrait de l'album Spirit Sortie 19 octobre 2007 (R-U) 3 mars 2008 (France) Enregistré 2007Los Angeles (États-Unis) Durée 4:01 (radio)4:21 (album) Genre R&B, pop, ballade Format CD, télécha...
Факундо Пельїстрі Особисті дані Народження 20 грудня 2001(2001-12-20) (21 рік) Монтевідео, Уругвай Зріст 175 см Вага 65 кг Громадянство Уругвай[1] Позиція нападник Інформація про клуб Поточний клуб «Манчестер Юнайтед» Номер 28 Юнацькі клуби 2012–2018 «Рівер Плейт» (Монтев
Te Rauparaha Der Wairau-Tumult am 17. Juni 1843 in Neuseeland fand 10 km nördlich des heutigen Blenheim und 60 km südöstlich von Nelson entfernt im Tal des Wairau River statt und war der erste dokumentierte bewaffnete Konflikt zwischen Māori und den Pākehā, den weißen europäischen Siedlern, im Rahmen der Neuseelandkriege. Hintergrund Am 29. August 1838 wurde in Großbritannien die zweite New Zealand Company mit dem Ziel gegründet, die Kolonisierung Neuseelands voranzutreiben und...
世界貿易組織秘書長(英語:Director-General of the World Trade Organization)為負責監督世界貿易組織其行政業務的職位,但由於世界貿易組織絕大部分的政策都是由會員國所召開的專門會議或者集體大會決定,使得世界貿易組織秘書長主要工作為發表消息以及管理業務,而其轄下直屬單位是約有700多人的世界貿易組織秘書處。今日世界貿易組織總幹事人選是由會員國所任命,而一期4
الريشة الطائرة في الألعاب الأولمبية الصيفيةالهيئة الإداريةالاتحاد الدولي لكرة الريشةالمنافسات5 (رجال: 2; سيدات: 2; مختلطة: 1)الألعاب 1896 1900 1904 1908 1912 1920 1924 1928 1932 1936 1948 1952 1956 1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020 ملاحظة: سنوات الرياضة الترويجية او الاستعراضية موضحة بالأرقام
American film production studio in Atlanta, Georgia Very Perry Productions, LLCTypePrivateIndustryProduction studioGenreFilm, play and television showsFounded2006; 17 years ago (2006)FounderTyler PerryHeadquartersAtlanta, Georgia, United StatesArea servedUnited StatesKey peopleTyler Perry (CEO) (President)(Senior Vice President)Revenue US$907 million[1]OwnerTyler PerryDivisionsThe Tyler Perry FoundationSubsidiaries34 Street FilmsBET+Websitetylerperrystudios.com Very ...
Lamb's House Lamb's House is a historic A-listed building in Leith, a northern district of the City of Edinburgh, Scotland, which has served as both a place of residence and warehouse.[1] The present house is an example of early-17th-century architecture typical of harbour towns around the North Sea. The site was originally owned by Edinburgh merchant and shipowner Andrew Lamb. The Lamb family were reputed to have entertained Mary, Queen of Scots, somewhere nearby on her return from F...
Building in Singapore River, SingaporeInterContinental Singapore Robertson QuayGeneral informationLocationRobertson Quay, Singapore River, SingaporeCoordinates1°17′25.3″N 103°50′19.0″E / 1.290361°N 103.838611°E / 1.290361; 103.838611Opening2017OwnerRB Corp Pte LtdManagementSCDA ArchitectsTechnical detailsFloor count17Other informationNumber of rooms225Number of suites34Number of restaurants4WebsiteHotel Website InterContinental Singapore Robertson Quay is a...
Type of radio antenna Hettinger's Aerial Conductors for Wireless Signaling US1309031A A plasma antenna is a type of radio antenna currently in development in which plasma is used instead of the metal elements of a traditional antenna.[1] A plasma antenna can be used for both transmission and reception.[2] Although plasma antennas have only become practical in recent years[when?], the idea is not new; a patent for an antenna using the concept was granted to J. Hettinger...
For the Australian rules footballer, see Lance Watson (Australian footballer). American soccer player Lance Watson Personal informationFull name Lance WatsonDate of birth (1983-10-06) October 6, 1983 (age 40)Place of birth Nederland, Texas, United StatesHeight 5 ft 7 in (1.70 m)Position(s) Midfielder, DefenderYouth career2002–2005 New Mexico LobosSenior career*Years Team Apps (Gls)2004 Indiana Invaders 13 (3)2005 Chicago Fire Premier 5 (0)2006–2009 Kansas City Wizards ...
يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) العلاقات المصرية البريطانيا مصر بريطانيا العلاقات المصرية البريطانيا تعديل مصدري - تعد...
British journalist and presenter in 2022 Hannah Vaughan Jones (née Tallet) is a British journalist and presenter, employed by CNN International and previously on Sky News. Early life Jones was brought up in the West Country. Her home town is Bristol and she attended Bristol Grammar School. Broadcasting career Prior to joining Sky in 2007, she worked as a BBC radio reporter in Bristol, a senior producer for the Associated Press and as a TV reporter for Russia Today (RT) based in Moscow. She a...
S. K. DasHakim Mahkamah Agung IndiaMasa jabatan30-04-1956–02-09-1963 Informasi pribadiKebangsaanIndiaProfesiHakimSunting kotak info • L • B S. K. Das adalah hakim Mahkamah Agung India. Ia mulai menjabat sebagai hakim di mahkamah tersebut pada 30-04-1956. Masa baktinya sebagai hakim berakhir pada 02-09-1963.[1] Referensi ^ Daftar Hakim di Mahkamah Agung India. Mahkamah Agung India. Diakses tanggal 10 Juni 2021. Artikel bertopik biografi India ini adalah sebuah rin...
Urban Street JamGenrehip hop culture festivalFrequencyannualLocation(s)Irvine, CaliforniaFounded2010Websiteurbanstreetjam.com Urban Street Jam is an annual hip-hop culture festival that showcases music, art, dance, and fashion in the hip-hop community. History Craig Borja of Phaze1 Entertainment/owner and producer along with Marlon Shell of Stylz Dance Studio/Co owner and producer of Urban Street Jams first annual event was held on February 20, 2010, Urban Street Jam's original venue was sche...
British materials scientist, engineer, broadcaster and writer Mark MiodownikMBE FREngMiodownik speaking at the Science is Vital rally in 2010BornMark Andrew Miodownik (1969-04-25) 25 April 1969 (age 54)[2]London, EnglandNationalityBritishEducationEmanuel SchoolAlma materUniversity of Oxford (BA, DPhil)[2]Known forBroadcastingAwardsHetherington Prize (1995) Morgan-Botti lecture (2013)Royal Institution Christmas Lectures (2014)[1]AAAS Public Engagement...
WTA Tour 2017stagione di tornei Simona Halep ha finito la stagione al numero uno del ranking mondiale per la prima volta in carriera. Sport Tennis Serie WTA Tour Durata 2 gennaio 2017 – 5 novembre 2017 Edizione 47ª Tornei 59 Categorie Grande Slam (4)WTA Finals WTA Elite TrophyWTA Premier Mandatory (4)WTA Premier 5 (5)WTA Premier (12)WTA International (32) Risultati Maggior n. di titoli Elina Svitolina (5) Maggior n. di finali Caroline Wozniacki (8) Maggiori guadagni Venus Williams ($5 ...
Non-periodic tiling in geometry Wikimedia Commons has media related to Pinwheel tiling. In geometry, pinwheel tilings are non-periodic tilings defined by Charles Radin and based on a construction due to John Conway. They are the first known non-periodic tilings to each have the property that their tiles appear in infinitely many orientations. Conway's tessellation Conway's triangle decomposition into smaller similar triangles. Let T {\displaystyle T} be the right triangle with side length 1 {...