Entropi

Es yang meleleh pada suhu ruangan merupakan contoh dari naiknya entropi,[note 1] dijelaskan pada tahun 1862 oleh Rudolf Clausius sebagai kenaikan disgregasi molekul air pada es.[1]

Entropi adalah salah satu besaran termodinamika yang mengukur energi dalam sistem per satuan temperatur yang tak dapat digunakan untuk melakukan usaha. Mungkin manifestasi yang paling umum dari entropi adalah (mengikuti hukum termodinamika), entropi dari sebuah sistem tertutup selalu naik dan pada kondisi transfer panas, energi panas berpindah dari komponen yang bersuhu lebih tinggi ke komponen yang bersuhu lebih rendah. Pada suatu sistem yang panasnya terisolasi, entropi hanya berjalan satu arah (bukan proses reversibel/bolak-balik). Entropi suatu sistem perlu diukur untuk menentukan bahwa energi tidak dapat dipakai untuk melakukan usaha pada proses-proses termodinamika. Proses-proses ini hanya bisa dilakukan oleh energi yang sudah diubah bentuknya, dan ketika energi diubah menjadi kerja/usaha, maka secara teoretis mempunyai efisiensi maksimum tertentu. Selama kerja/usaha tersebut, entropi akan terkumpul pada sistem, yang lalu terdisipasi dalam bentuk panas buangan.

Pada termodinamika klasik, konsep entropi didefinisikan pada hukum kedua termodinamika, yang menyatakan bahwa entropi dari sistem yang terisolasi selalu bertambah atau tetap konstan. Maka, entropi juga dapat menjadi ukuran kecenderungan suatu proses, apakah proses tersebut cenderung akan "terentropikan" atau akan berlangsung ke arah tertentu. Entropi juga menunjukkan bahwa energi panas selalu mengalir secara spontan dari daerah yang suhunya lebih tinggi ke daerah yang suhunya lebih rendah.

Entropi termodinamika mempunyai dimensi energi dibagi temperatur, yang mempunyai Satuan Internasional joule per kelvin (J/K).

Kata entropi pertama kali dicetuskan oleh Rudolf Clausius pada tahun 1865, berasal dari bahasa Yunani εντροπία [entropía], εν- [en-] (masuk) dan τροπή [tropē] (mengubah, mengonversi).[2][note 2]

Catatan

  1. ^ In complex systems of molecules, such as at the critical point of water or when salt is added to an ice-water mixture, entropy can either increase or decrease depending on system parameters, such as temperature and pressure. For example, if the spontaneous crystallization of a supercooled liquid takes place under adiabatic conditions the entropy of the resulting crystal will be greater than that of the supercooled liquid (Denbigh, K. (1982). The Principles of Chemical Equilibrium, 4th Ed.). In general, however, when ice melts the entropy of the adjoined hot and cold bodies increases. Some further tutorials: Ice-melting (example by Journal of Chemical Education—subscription required); Ice-melting and Entropy Change (example by The American Heritage Book of English Usage—archive.org copy); Ice-melting and Entropy Change (discussion by Western Washington University—archive.org copy)
  2. ^ Sebuah "mesin" dalam konteksnya disini termasuk juga organisme biologis.

Referensi

  1. ^ Clausius, Rudolf (1862). Communicated to the Naturforschende Gesellschaft of Zurich, January 27, 1862; published in the Vierteljahrschrift of this Society, vol. vii. p. 48; in Poggendorff’s Annalen, May 1862, vol. cxvi. p. 73; in the Philosophical Magazine, S. 4. vol. xxiv. pp. 81, 201; and in the Journal des Mathematiques of Paris, S. 2. vol. vii. p. 209.
  2. ^ "Entropy". Online Etymology Dictionary. Diakses tanggal 2008-08-05. 

Bacaan lebih lanjut

Pranala luar

Strategi Solo vs Squad di Free Fire: Cara Menang Mudah!